A CATEGORICAL ANALOGUE OF Z_{n} Alexandru Solian

Résumé

Si W_{0} est un objet non nul du N catégoriel (désigné $C N$), 1 'on construit une catégorie $C Z_{W_{0}}$, qui - si l'on impose certaines restrictions au concept de catégorie quotient (cf. [11]) - est un quotient de $C N$. Comme $C N, C Z_{W_{0}}$ est une catégorie monołdale, mais possède en plus une structure de groupe catégoriel (cf. [10]).

If W_{0} is a non-zero object of the categorical N (denoted by $C N$), a category $\mathrm{CZ}_{W_{0}}$ is constructed, which, under certain restrictions on the concept of a quotient category (cf. [11]), is a quotient of CN . Like $\mathrm{CN}, \mathrm{CZ}_{\mathrm{W}_{0}}$ is a monoidal category, but has, in addition, a categorical group structure (cf. [10]).

0 . Introduction

If we agree to call "categorical algebra" the algebra of those structures which are defined on categories rather than on sets, the "binary relations" occurring in "set-theoretical algebra" might be replaced by "(iso)morphisms". Consequently, when quotient categories are formed, instead of simply identifying the "equivalent" objects, one only has to construct canonical isomorphisms between them. Since the morphisms already existing in the original category must be also taken into account, one considers pairs of "equivalent" morphisms and constructs
two isomorphisms, one between the domains, the other one between the codomains, of such morphisms, so that the diagram resulting in the quotient structure is commutative. This approach was taken in [11], where we dealt with the general situation.

We note that C. Ehresmann has introduced and studied the concept of quasiquotient structures [1]. It would be interesting to study how the above concept of quotient relates to that of quasi-quotient, and to describe possible situations when the two concepts intersect.

In the present paper, we apply, in a certain sense, the results of [11] to a specific case. Namely, we consider the categorical analogue of the construction of the additive group z_{n} of cosets modulo a (positive) integer n from the additive monoid N of natural numbers. In the set-theoretical case, natural numbers that are congruent modulo n are "identified". In the categorical case, starting from the categorical analogue of N (cf. [7], VII.1.), which we denote by $C N$, and which is a monoidal category, and from a non-zero object W_{o} of $C N$ ("non-zero" meaning "different from the unit object"), we only add isomorphisms and obtain a categorical group - alternatively, a category with group structure - $\mathrm{CZ}_{W_{0}}$, which is the categorical analogue of Z_{n}. (For the concept of categorical group, see [10]; an earlier variant was called "groupe dans une catégorie", cf. [9]; for the concept of category with group structure, see [12], I and [5]; all of these are slight variations of the same concept.) More specifically, the objects of $C_{W_{W}}$ are the objects of CN , i.e., words built up with two symbols, (+) and I , and the morphisms are, besides those between words of the same length, as in $C N$, those which link words of lengths congruent modulo the length of W_{o} (thus, the construction depends only on the length of W_{0}).

In this connection, we mention the construction used by Lambek ([4], 1.4.) to adjoin a new assumption to a conjunction calculus and to include all proofs based on this assumption.

Under certain restrictions - called the coherence conditions - on the concept of a quotient category, $C Z_{W_{0}}$ turns out to be a quotient monoidal category
of $C N$ (the analogue of the fact that Z_{n} is a quotient monoid of N). Namely, $\mathbf{C Z}_{W_{0}}$ has the universal property for the monoidal categories D and the homomorphisms $C N \rightarrow D$ such that D contains isomorphisms as above and the coherence conditions are satisfied. This is proved in section 3 of the paper. In section 6, we construct another categorical analogue of Z_{n}, denoted $\bar{C}_{W_{0}}$, this time starting from the categorical analogue $C Z$ of Z (cf. [10], 2, Ex. (5)). And $\overline{C Z}_{W_{0}}$ turns out to be a quotient category of $C Z$ as a categorical group; that is, the universal property holds with respect to categorical groups and their homomorphisms such that, for the "canonical" isomorphisms, (additional) coherence conditions are satisfied. In section 5, we take a first step in the direction of proving a categorical analogue of the property that a (set-theoretical) monoid of finite "exponent" is a group. Essentially, what is missing is the (di) naturality (cf. [7], IX.4.; also [2]) of the reciprocity isomorphisms. We suggest that this difficulty might be, however, overcome by using other types of quotient structures.

1. In [7], VII.2., there is given the construction of the categorical analogue of N. This analogue, denoted in the sequel by $C N$, is the free monoidal category on one generator (cf. loc. cit.). Intuitively, instead of identifying the different "objects" obtained by adding together the same number of copies of 1 (the generator), one distinguishes between these objects; only, they are to be isomorphic. Formally, CN is a category having as objects formal expressions (or words) in two symbols, $(+)$ and I (the latter called sometimes the empty word), connected by a symbol \square. That is, $(+)$ and I are words; and if W_{1} and W_{2} are words, so is $\left(W_{1}\right) \square\left(W_{2}\right)$. (Subsequently, we will omit the parentheses whenever possible, as, for example, in the last expression.) The length $|W|$ of a word W is defined by induction as follows: $|(+)|=1,|I|=0, \quad \mid W_{1}\left[W_{2}\left|=\left|W_{1}\right|+\left|W_{2}\right|\right.\right.$. The morphisms of $C N$ are the following: If W and V are words of the same length, there is exactly one morphism $W \rightarrow V$; otherwise, none. Since between any two objects there is at most one morphism, composition is clear. We note that all morphisms are isomorphisms. The category $C N$ becomes a monoidal category if we define the multiplication of words by $\left(W_{1}, W_{2}\right) \leftrightarrow W_{1}\left[N_{2}\right.$ and correspondingly for morphisms. The unit
object is I. Since all diagrams commute, naturality and coherence are trivially satisfied.

In [10], 2., Ex. (5), the categorical analogue of \mathbf{Z} (denoted $C Z$) is defined. Since this time we need a "negative generator", we use an additional symbol, (-). Formally, the objects are words built up with three symbols, (+), (- , and I, connected by the symbol \square. Now we allow negative lengths. We define $|(+)|=1, \quad|(-)|=-1, \quad|I|=0, \quad\left|W_{1} \square W_{2}\right|=\left|W_{1}\right|+\left|W_{2}\right|$. Again, there is exactly one morphism $W \rightarrow V$ if $|W|=|V|$; otherwise, none. But now, for example, there are (iso)morphisms $(+) \square(-) \vec{\sim} I$ and $(-) \square(+) \vec{\sim} I$. We obtain a monoidal category by defining the multiplication in the same way as for CN , with I the unit object. There is, in addition, a reciprocity functor ()$^{\sim}:(C \mathbb{Z}){ }^{o p} \rightarrow C \mathbb{Z}$, defined by $(+)^{\sim}=(-),(-)^{\sim}=(+), \quad I^{\sim}=I, \quad\left(W_{1}\left[W_{2}\right)^{\sim}=\left(W_{2}\right)^{\sim} \square\left(W_{1}\right)^{\sim}\right.$. We have $\left(W^{\sim}\right)^{\sim}=W$ for any word W; and if we denote by $\lambda_{W}: W \tilde{W} \rightarrow I, \rho_{W}: W\left[W^{\sim} \rightarrow I\right.$ the only possible morphisms (with the corresponding domains and codomains), we have $\lambda_{W} \sim=\rho_{W}$, $\rho_{W}{ }^{\sim}=\lambda_{W}$. Thus, we obtain a categorical group (cf. [10] and [9]); also a category with group structure (cf. Ulbrich [12], I. and Laplaza [5]).
2. We define the categorical analogue $C_{Z_{o}}$ of \mathbb{Z}_{n}, the "additive" group of congruence classes modulo n as obtained by starting from natural numbers. Instead of identifying natural numbers to obtain congruence classes, we use isomorphisms to link those words from $C N$ which have congruent lengths modulo the length of the given word, W_{0}, which plays the role of n.

Let $W_{0} \neq I$ be a fixed word in $C N$. (If $W_{o}=I$, there will be no difference between CN and $\mathrm{CZ}_{\mathrm{W}_{0}}$, and the latter will not have a group structure in the manner defined for the case $W_{0} \neq I$.) We construct the following category, denoted $\mathrm{CZ}_{W_{0}}$, the categorical analogue of Z_{n} : The objects are those of $C N$. If W and V are such objects, there is exactly one arrow $W \rightarrow V$ if $|W| \equiv|V|\left(\bmod \left|W_{0}\right|\right)$; otherwise, none. In particular, all the morphisms of CN are also morphisms of $C Z_{W_{0}}$. Again, there is at most one morphism between two given words, and therefore a11 diagrams commute; and each morphism is an isomorphism. We define a
multiplication on the set of words by the same rule as for $C N$. And if $\mathbf{f}_{\mathrm{i}}: \mathrm{w}_{\mathrm{i}} \rightarrow \mathrm{V}_{\mathrm{i}}$, $i=1,2$, are morphisms, we have $\left|w_{i}\right| \equiv\left|v_{i}\right|\left(\bmod \left|w_{o}\right|\right), i=1,2$, and, consequently, $\quad\left|W_{1} \square W_{2}\right| \equiv \mid V_{1}\left[V_{2} \mid\left(\bmod \left|W_{0}\right|\right)\right.$, so that there is a morphism $f_{1} \square f_{2}$: $W_{1} \mathrm{WN}_{2} \rightarrow \mathrm{~V}_{1} \square \mathrm{~V}_{2}$. The multiplication is a functor, and if we define the unit object to be I, and the associativity and left and right unit isomorphisms in the only possible way, we obtain a monoidal category.

Now, we can use a selection process to choose, for each object W, a \mathcal{W}^{\sim}
 that $C_{W_{0}}$ is defined up to this selection process.) Indeed, since the set of words has the cardinality of N, let us consider a well-ordering of type ω in this set, with I the first element. We define $I^{\sim} \xlongequal[I]{ }$; and if a W is already of the form $\tilde{V^{\sim}}$ for a previous V, we define $W^{\sim}=V$; if this is not the case, we select arbitrarily a \mathcal{W}^{\sim} such that $|W|+\left|W^{\sim}\right|$ is a multiple of $\left|W_{0}\right|$ and W^{\sim} has not been previously utilized; this is possible since at each step only finitely many objects have been previously selected as $W^{\sim} s$. Now, since $|w|+\left|w^{\sim}\right| \equiv 0$ (mod $\left.\left|W_{o}\right|\right)$, there are unique isomorphisms ρ_{W} and λ_{W} as above, which satisfy the dinaturality conditions (cf. [7], IX.4.; also [2]) since in $\mathrm{CZ}_{\mathrm{W}_{0}}$ all diagrams commute. And since by the above selection process we have $\left(W^{\sim}\right)^{\sim}=W$ for each W, all the axioms for a categorical group are satisfied, including $\lambda_{W} \sim=\rho_{W}, \rho_{W} \sim=\lambda_{W}$ for any W.
3. We want to prove that $\mathrm{CZ}_{\mathrm{W}_{0}}$ is a quotient monoidal category of CN with respect to some set S of pairs of morphisms, in a sense slightly modified from that of [11], 3., Th. 3. In that paper, a (small) monoidal category \mathcal{C} was given together with a set S of pairs of morphisms of C. We constructed a monoidal category \mathcal{C} / S and a strict homomorphism $T: C \rightarrow C / S$ such that for every ($u, v) \in S$, $u: A \rightarrow A^{\prime}, v: B \rightarrow B^{\prime}$, there are isomorphisms $f_{u, v}: T A \nRightarrow T B, f_{u, v}^{\prime}: T A^{\prime} \neq T B^{\prime}$ rendering commutative the diagram

Besides, ($(C / S, T)$ has the universal property that for each (small) monoidal category D and (not necessarily strict) homomorphism (F, Φ, μ): $C \rightarrow D$ (cf. Definition 1, below) such that, for $(u, v) \in S$ as above, there are given isomorphisms $g_{u, v}: F A \nRightarrow F B, g_{u, v}^{\prime}: F A^{\prime} \not \approx F B '$ rendering commutative the diagram
(2)

there exists a unique homomorphism (G, Ψ, ν): $\mathrm{C} / \mathrm{S} \rightarrow \mathrm{D}$ such that
$(G, \Psi, v) \circ(T, i d, i d)=(F, \Phi, \mu)$ and $G\left(f_{u, v}\right)=g_{u, v}, G\left(f_{u, v}^{\prime}\right)=g_{u, v}^{\prime}$ for any $(u, v) \in S$. Here we require an additional condition, namely, the one given by the following definition:

DEFINITION 1. Let C, D be monoidal categories, with the multiplication functor denoted by \otimes in both, and with the unit objects I, I', respectively. Let S be a set of ordered pairs of morphisms of C. Let $(F, \Phi, \mu): C \rightarrow D$ be a homomorphism of monoidal categories, where $\mathrm{F}: \mathrm{C} \rightarrow \mathrm{D}$ is a functor between the underlying categories, Φ is a natural isomorphism such that $\Phi_{X, Y}: F(X \otimes Y) \nRightarrow F X \otimes F Y$ for objects X, Y of C, and μ is an isomorphism FI $\neq I$. Let us assume that for each $(u, v) \in S, u: A \rightarrow A^{\prime}, v: B \rightarrow B^{\prime}$, there are given isomorphisms $g_{u, v}$: $F A \nRightarrow F B, g_{u, v}^{\prime}: F A^{\prime} \not \approx F B^{\prime}$ of D such that diagram (2) commutes. Then the following conditions on the $g_{u, v} s, g_{u, v}^{\prime} s$, and (F, Φ, μ) are called the coherence conditions: (A) If $(u, v),(v, w)$ and (u, w) are pairs from S, then $g_{v, w} \circ g_{u, v}=g_{u, w}$ and $g_{v, w}^{\prime} \circ g_{u, v}^{\prime}=g_{u, w}^{\prime}$; (B) If ($\left.u, v\right) \in S$ and domain(u) $=$ domain(v), then $g_{u, v}$ is the identity; and if $\operatorname{codomain}(u)=\operatorname{codomain}(v)$, then $g_{u, v}^{\prime}$ is the identity; (C) If $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$ and $\left(u_{1} \otimes u_{2}, v\left(\otimes v_{2}\right)\right.$ are pairs from s, with $u_{i}: A_{i} \rightarrow A_{i}^{1}, v_{i}: B_{i} \rightarrow B_{i}^{1}, i=1,2$, then the following diagrams commute

(Actually, the commutativity of diagrams (3) is a relaxation of the conditions $g_{u_{1} \otimes u_{2}, v_{1} \otimes v_{2}}=g_{u_{1}, v_{1}} \otimes g_{u_{2}, v_{2}}$, etc., which correspond to the case when Φ is the identity.) \square

The approach in [11] was a general one, and, besides, we were not concerned about the relationships between, for example, $g_{u, v}, g_{v, w}$, and $g_{u, w}$. It will turn out (see Proposition 1, below) that if we impose these more restrictive conditions, $\quad C Z_{W_{0}}$ is, up to an isomorphism, "the" quotient category $C N / S$ for some convenient S; if we did not require these conditions, the quotient category would probably have to be "richer", i.e., to contain more morphisms. Thus, the next result is a characterization of $\mathrm{CZ}_{\mathrm{W}_{\mathrm{o}}}$ as a quotient monoidal category of CN under the assumption that the coherence conditions hold. (And Proposition 2 of section 6 has a similar interpretation, only, in terms of categorical groups instead of monoidal categories.) A general treatment of the quotient categories, as described in Part I of [11], but such that the coherence conditions are satisfied, should be done in another paper.

Let S be the set of all ordered pairs (u, v) of morphisms of $C N$ such that, if $u: W \rightarrow W^{\prime}, v: v \rightarrow V^{\prime}$, then $|W| \equiv|v|\left(\bmod \left|W_{0}\right|\right)$ (and hence, necessarily, $\left.\left|W^{\prime}\right| \equiv\left|V^{\prime}\right|\left(\bmod \left|W_{0}\right|\right)\right)$.

We have the following result:
PROPOSITION 1. There exists a strict homomorphism of monoidal categories
$\mathrm{T}: \mathrm{CN} \rightarrow \mathrm{CZ}_{\mathrm{W}_{0}}$ such that, for each $(u, v) \in S$ as above, there are isomorphisms $f_{u, v}: T W \gtrsim T V, f_{u, v}^{\prime}: T W^{\prime} \gtrsim T V^{\prime}$ in $C_{W_{0}}$ with the property that $f_{u, v}^{\prime} \circ T u=$ $T V \circ f_{u, v}$ and that the $f_{u, v} s, f_{u, v}^{\prime} s$, and T satisfy the coherence conditions. And for any monoidal category $D=\left(D, \otimes, I^{\prime}, a^{\prime}, \ell^{\prime}, r^{\prime}\right)$ and homomorphism of monoidal
categories $(F, \Phi, \mu): C N \rightarrow D$ such that for each $(u, v) \in S$ as above there are given isomorphisms $g_{u, v}: F W \nRightarrow F V, g_{u, v}^{\prime}: F^{\prime} \neq \mathrm{FV}^{\prime}$ in D with the property that $g_{u, v}^{\prime} \circ \mathrm{Fu}=F v \circ \mathrm{~g}_{\mathrm{u}, \mathrm{v}}$ and that the $\mathrm{g}_{\mathrm{u}, \mathrm{v}} \mathrm{s}, \mathrm{g}_{\mathrm{u}, \mathrm{v}}^{\prime} \mathrm{s}$, and (F, Φ, μ) satisfy the coherence conditions, there is a unique homomorphism of monoidal categories (G, Ψ, v):
$C Z_{W_{o}} \rightarrow D$ such that $(G, \Psi, v) \circ(T, i d, i d)=(F, \Phi, \mu)$ and $G\left(f_{u, v}\right)=g_{u, v}$, $G\left(f_{u, v}^{\prime}\right)=g_{u, v}^{\prime}$ for each $(u, v) \in S$.

PROOF. Let T be the functor which is the identity on objects and maps each morphism to itself. If $(u, v) \in S$ as above, then, by the definition of $C Z_{W_{0}}$, there is exactly one isomorphism $f_{u, v}: T W=W \neq T V=V$, and one $f_{u, v}^{\prime}: T W^{\prime}=W^{\prime} \gtrsim T^{\prime}$ $=V^{\prime}$. By its very definition, T is a strict homomorphism of monoidal categories. The equations $f_{u, v}^{\prime} \circ T u=T v \circ f_{u, v}$ and the coherence conditions hold since in $\mathrm{CZ}_{\mathrm{W}_{0}}$ all diagrams commute.

Now, for the universal property, let us define $G(W)=F(W)$ for any word W. If $f: W \rightarrow V$ is a morphism of $C Z_{W_{0}}$, then $|W| \equiv|V|$ (mod $\left.\left|W_{0}\right|\right)$. Consequently, the pair $\left(1_{W}, 1_{V}\right)$ is in S, and there are isomorphism $g_{1_{W}}, 1_{V}, g_{1_{W}, 1_{V}}^{1}$ from $F W$ to $F V$ in D such that the corresponding diagram (2) commutes, that is, $g_{1_{W}}^{\prime}, 1_{V}=g_{1_{W}, 1_{V}}$. We define $G(f)=g_{1_{W}, 1_{V}}$. (In the sequel, we will write $g_{W, V}$ instead of $\mathrm{g}_{1_{W}, 1_{V}}$.) Then G is a functor, according to the coherence conditions (A) and (B).

We define Ψ by $\Psi_{W_{1}}, W_{2}=\Phi_{W_{1}}, W_{2}$; and ν by $\nu=\mu$. Then Ψ is natural. Indeed, if $\mathbf{f}_{\mathbf{i}}: W_{i} \rightarrow V_{i}, i=1,2$, are morphisms of $C_{W_{0}}$, then $G\left(f_{1} \square f_{2}\right)=g_{W_{1} \square W_{2}}, V_{1} \square V_{2}$, and the naturality of Ψ follows from the coherence condition (C).

Let us show that $G \circ T=F$. The two functors have the same effect on words. Let $f: W \rightarrow V$ be a morphism of $C N$. Then $|W|=|V|$, and hence the pairs $\left(1_{W}, f\right)$ and ($f, 1_{V}$) are in S. Using conditions (A) and (B), we obtain the (commutative) diagram

and $G(f)=g_{W, V}=g_{f, 1_{V}} \circ g_{1_{W}, f}=g_{f, 1_{V}}=F(f)$.
To prove that (G, Ψ, ν) is a homomorphism of monoidal categories, we must show that

$$
\begin{gathered}
\left.{ }^{\mathrm{a}} \mathrm{GW}_{1}, G W_{2}, G W_{3}^{\circ}{ }^{\circ} \Psi_{W_{1}}, W_{2}^{\otimes 1} \mathrm{GW}_{3}\right) \circ \Psi_{W_{1}} \square W_{2}, W_{3}=\left(1_{G W_{1}}^{\left.\otimes \Psi_{W_{2}}, W_{3}\right) \circ \Psi_{W_{1}}, W_{2} \square W_{3}{ }^{\circ G\left(a_{W_{1}}, W_{2}, W_{3}\right),}} \begin{array}{c}
\ell_{G W}^{\prime} \circ(V \otimes 1 \\
G W
\end{array}\right) \circ \Psi_{I, W}=G\left(\ell_{W}\right), \quad r_{G W}^{\prime} \circ\left(1_{G W} \otimes V\right) \circ \Psi_{W, I}=G\left(r_{W}\right)
\end{gathered}
$$

for any words W_{1}, W_{2}, W_{3}, W. This is easy, since we may replace everywhere G by F, Ψ by Φ, and V by μ, and the resulting identities hold because (F, Φ, μ) is a homomorphism. By the definitions of Ψ and V it follows that $(G, \Psi, \nu) \circ(T, i d, i d)=(F, \Phi, \mu)$.

Let us prove that if $(u, v) \in S$, with $u: W \rightarrow W^{\prime}, v: V \rightarrow V^{\prime}$, then $G\left(f_{u, v}\right)=g_{u, v}, G\left(f_{u, v}^{\prime}\right)=g_{u, v}^{\prime}$. Since $\left(1_{W}, u\right)$ and $\left(v, 1_{v}\right)$ are in S, we obtain, using conditions (A) and (B), the (commutative) diagram

and $G\left(f_{u, v}^{\prime}\right)=g_{W^{\prime}, v^{\prime}}=g_{W^{\prime}, v^{\prime}}^{\prime}=g_{v, l_{v^{\prime}}^{\prime}, ~}{ }^{\circ} g_{u, v^{\prime}}^{\prime}{ }^{\circ} g_{W^{\prime}}^{\prime}, u=g_{u, v}^{\prime}$. The other equation is proved in a similar fashion.

To prove that (G, Ψ, ν) is unique with the above properties, we only show that if ($G^{\prime}, \Psi^{\prime}, \nu^{\prime}$) is another such homomorphism, then $G^{\prime}(f)=G(f)$ for any morphism $f: W \rightarrow V$ of $C Z_{W_{0}}$. Indeed, since $\left(1_{W}, 1_{V}\right) \in S$, there must be an $f_{1_{W}}, 1_{V}$: $W \rightarrow V$ in $C Z_{W_{0}}$. Then $f=f_{1_{W}}, 1_{V}$, and $G^{\prime}(f)=G^{\prime}\left(f_{1_{W}}, 1_{V}\right)=g_{1_{W}, I_{V}}=G(f)$. The other points of the uniqueness proof are clear.

One can take a step further, and deal with natural transformations. Let, in addition to (F, Φ, μ), the $g_{u, v} s$ and $g_{u, v}^{\prime} s$ as in Proposition 1 , a homomorphism $(\bar{F}, \Phi, \bar{\mu})$ and isomorphisms $\bar{g}_{u, v}$ and $\bar{g}_{u, v}^{\prime}$ be given, satisfying the same conditions, and let $\sigma:(F, \Psi, \mu) \rightarrow(\bar{F}, \bar{\Phi}, \bar{\mu})$ be a monoidal natural transformation (cf. [3], II.1); that is, σ is a natural transformation $F \rightarrow \bar{F}$ and, in addition,

$$
\left(\sigma_{W_{1}} \otimes \sigma_{W_{2}}\right) \circ \Phi_{W_{1}}, W_{2}=\bar{\Phi}_{W_{1}}, W_{2}^{\circ \sigma_{W_{1}} \square W_{2}}, \quad \bar{\mu} \circ \sigma_{I}=\mu
$$

for any words W_{1}, W_{2}. Let us assume that, in addition to the coherence conditions (A) - (C), the following condition is satisfied: (T) For any (u, v) $\in S$, $u: W \rightarrow W^{\prime}, v: V \rightarrow V^{\prime}$, the diagrams

are commutative. Intuitively, these conditions mean that if F is to "change" into \bar{F}, the change must be consistent with the change in the $g_{u, v} s$ and the $g_{u, v}^{\prime} s$. Then, denoting by (G, Ψ, ν) the homomorphism $C_{W_{0}} \rightarrow D$ given by Proposition l, and by $(\bar{G}, \bar{\Psi}, \bar{v})$ the corresponding homomorphism for $(\bar{F}, \bar{\Phi}, \bar{\mu})$, there is a unique monoidal natural transformation $\tau:(G, \Psi, \nu) \rightarrow(\bar{G}, \bar{\Psi}, \bar{\nu})$ such that $\tau \circ T=\sigma$, where \circ represents the horizontal composition in the 2-category of monoidal categories, monoidal functors, and monoidal natural transformations. Indeed, one defines $\quad \tau_{W}=\sigma_{W}$ for any object W of $C N \quad$ (or of $C Z_{W_{0}}$).
4. The categories $C N, C Z$, and $\mathrm{CZ}_{\mathrm{W}_{0}}$ are in fact symmetric monoidal categories (cf. [7], VII.7). Moreover, the group structures on $C Z$ and $C_{W_{0}}$ are abelian (cf. [12] and [5]), or symnetric categorical groups (cf. [11], 6). This means that there is a symmetry natural isomorphism $c_{W_{1}}, W_{2}: W_{1}\left[W_{2} \gtrsim W_{2}\left[W_{1}\right.\right.$ which is jointly coherent with the associativity and unit isomorphisms. We can extend the properties given in section 3 , so that they would refer to symmetric monoidal categories. Indeed, $T: C N \rightarrow Z_{W_{0}}$ is a strict homomorphism of symmetric monoidal
categories. And if D, as defined in the statement of Proposition 1 of section 3, is, in addition, a symmetric monoidal category, with the symmetry natural isomorphism c^{\prime}, and (F, Φ, μ) is a homomorphism for this structure (meaning that, in addition to being a homomorphism of monoidal categories, the equations
 (G, Ψ, ν) of section 3 is also a homomorphism of symmetric monoidal categories; and, of course, it is unique.
5. This section may be considered as a first step in the direction of obtaining a categorical analogue of the property that a (set-theoretical) monoid of finite exponent (that is, such that there is a natural $n \neq 0$ with the property that $x^{n}=1$ for any x) is a group. Of course, instead of assuming that $x^{n}=1$, we assume that there is a natural isomorphism $\pi_{A}: A^{W_{0}} \approx I$, for a fixed $W_{D} \neq I$ from CN , with the property that π is jointly coherent with the associativity, etc. It is likely that such a structure can be constructed using methods described in [11]. Here we only recover part of the group structure. Essentially, what is missing is the (di) naturality of the reciprocity isomorphisms.

Let $D=\left(D, \otimes, I^{\prime}, a^{\prime}, \ell^{\prime}, r^{\prime}\right)$ be a monoidal category. If W is an object of $C N$, then a functor ()$^{W}: D \rightarrow D$ will be defined in the following, inductive, manner: If $W=I$, then ()$^{W}=K_{I}$, , the constant functor I^{\prime}; if $W=(+)$, then ()$^{W}=$ id D^{\prime} if $W=\left(W_{1}\right) \square\left(W_{2}\right)$, then $A^{W}=A^{W} 1_{\otimes A} W_{2}$ for any object A, and similarly for morphisms.

Now, let $W_{0} \neq I$ be a fixed object of $C N$, and let us assume that there is given a natural isomorphism

$$
\pi:()^{W_{0}} \nRightarrow K_{I^{\prime}}
$$

Let us assume, in addition, that $a^{\prime}, \ell^{\prime}, r^{\prime}$, and π are jointly coherent, which here means that any diagram in D whose arrows are built up via \otimes and composition with instances of $a^{\prime}, \ell^{\prime}, r^{\prime}, \pi$, their inverses, and identities is commutative. Let us call such arrows canonical.

Then, for any object A of D, there exists a strict homomorphism F_{A} : $C N \rightarrow D$ such that, for the S defined in 3 , there are $g_{u, v} s$ and $g_{u, v}^{\prime} s$ in D, $(u, v) \in S$, making the analogues of diagram (2) commute and such that the coherence conditions (cf. Definition 1 of 3) are satisfied. Indeed, we define $F_{A}(W)$ to be A^{W} and if $f: W \rightarrow V$ is a morphism of $C N$, then $F_{A}(f)$ is the unique morphism $A^{W} \rightarrow A^{V}$ which is built up with instances of $a^{\prime}, \ell^{\prime}, r^{\prime}$, their inverses, and identities (the πs are not included). Then F_{A} is a strict homomorphism. (We note that this is the homomorphism described as $w \mapsto w_{b}$ for a fixed b by Mac Lane in [7], VII.2.)

If W, V are objects of $C N$ such that $|W| \equiv|V|\left(\bmod \left|W_{0}\right|\right)$, then there is a (unique) canonical arrow $F_{A} W \rightarrow F_{A} V$. Indeed, let $|W|=n,\left|W_{0}\right|=n_{0}$, and let $n=k n_{0}+r$ with $0 \leq r<n_{0}$. Since for words S, T having the same length there is a canonical morphism $A^{S} \rightarrow A^{T}$, it suffices to show that if U is a word of length r and if we set $U_{0}=U, U_{t+1}=W_{o} \square U_{t}$, then there is a canonical morphism $b_{t}: A^{U_{t}} \rightarrow A^{U}$ for any natural t. We define $b_{o}: A^{U} \rightarrow A^{U}$ to be the identi$t y$, and b_{1} the composite of

$$
A^{U_{1}}=A^{W} O_{\otimes A}{ }^{\pi_{A} \otimes i d} I^{\prime} \otimes A^{U} \xrightarrow{\ell^{\prime}} A^{U} ;
$$

and if b_{t} has been defined, b_{t+1} is the composite of

$$
A^{U_{t+1}}=A^{W} 0_{\otimes A} U_{t}^{i^{i d \otimes b_{t}}} A^{W_{0}} \otimes A^{U} \xrightarrow{b_{1}} A^{U}
$$

Consequently, if $(u, v) \in S$, with $u: W \rightarrow W^{\prime}, v: V \rightarrow V^{\prime}$, then $|W| \equiv|V|\left(\bmod \left|W_{o}\right|\right)$ and $\left|W^{\prime}\right| \equiv\left|V^{\prime}\right|\left(\bmod \left|W_{0}\right|\right)$, so that there are canonical morphisms $A^{W} \rightarrow A^{V}$ and $A^{W^{\prime}} \rightarrow A^{V^{\prime}}$; and we define $g_{u, v}$ and $g_{u, v}^{\prime}$ to be, respectively, these morphisms. Since $F_{A} u, F_{A} v, g_{u, v}, g_{u, v}^{\prime}$ are canonical, we must have $g_{u, v}^{\prime}{ }^{\circ}{ }^{F u}=F^{\circ} \circ g_{u, v}$, as a, ℓ, r, π are jointly coherent; and, for the same reason, the coherence conditions (A) - (C) of section 3 must be satisfied.

According to Proposition 1 of 3 , there is a unique (necessarily strict) homomorphism $G_{A}: C_{W_{0}} \rightarrow D$ such that $G_{A} \circ T=F_{A}$ and $G_{A}\left(f_{u, v}\right)=g_{u, v}$,
$G_{A}\left(f_{u, v}^{\prime}\right)=g_{u, v}^{\prime}$ for each $(u, v) \in S$.
Now, we can find for the given A an A^{\sim} and canonical isomorphisms $\lambda_{A}^{\prime}: \tilde{A^{\prime}} \otimes A \approx I^{\prime}, \rho_{A}^{\prime}: A \otimes A^{\sim} \approx I^{\prime}$. Indeed, we set $A^{\sim}=G_{A}(-)=G_{A}\left(\left(^{\sim}\right)^{\sim}\right)$. Since there are isomorphisms $(-) \square(+) \approx I$ and $(+) \square(-) \neq I$ in $C Z_{W_{0}}$, their images under $G A$ are canonical, and these are λ_{A}^{\prime} and ρ_{A}^{\prime}, respectively. Since in diagram (l) of [10] (with s, d, σ, δ changed to ℓ, r, λ, ρ, respectively) all arrows are canonical, it is commutative. Of course, we can do that for any object A of D.

All this does not mean, however, that D with the described structure is a categorical group, as we did not prove the $\lambda^{\prime} s$ and $\rho^{\prime} s$ to be (di)natural (cf. [7], IX.4; also [2]), neither (A) ${ }^{\sim}$ to be A, etc. We only showed that, under the above hypotheses, we recover part of the group structure.
6. The construction of $\mathrm{CZ}_{\mathrm{W}_{0}}$, as provided in section 2 , is, of course, analogous to that of Z_{n}, n natural, starting from the monoid N of natural numbers and forming congruence classes modulo n, of natural numbers. The structure becomes a group just by adding new relations, and this was actually shown to happen, for this special case, also in the categorical setting, provided we replace the "relations" by "(iso)morphisms". We can start, however, from the categorical group structure carried by $C Z \quad$ (cf. section 1) and construct another categorical analogue of Z_{n}.

If we do that, this "new" analogue, which we denote by $\overline{\mathrm{C}} \mathbf{Z}_{\mathrm{W}}$, is to be defined in a somewhat different way. First, we start with $C Z$ instead of $C N$ (cf. section 2). Next, let W_{0} be an object of \mathbb{C} such that $\left|W_{0}\right|>0$. (If $\left|W_{0}\right|=0$, we do not obtain additional morphisms, and $\bar{C} Z_{W_{0}}$ is the same as $C Z$, as in the set-theoretical case; if $\left|W_{0}\right|<0$, we can replace W_{0} by W_{0}, which has positive length, and obtain the same $\overline{\mathrm{C}} \mathrm{Z}_{W_{0}} \cdot$) The objects of $\overline{\mathrm{C}} \mathrm{Z}_{W_{0}}$ are the objects of $C Z . \quad$ There is exactly one morphism $W \rightarrow V$ if $|W| \equiv|V|\left(\bmod \left|W_{0}\right|\right)$; otherwise, none. The multiplication and reciprocity functors are defined on objects in the same manner as those of $C Z$; and then, on morphisms, in the only possible manner.

We note that, in contrast to $C Z_{W_{0}}$, there is no longer a selection process involved. The functor $\bar{T}: C Z \rightarrow \overline{\mathrm{C}}_{W_{0}}$ which maps each object and morphism to itself is now a strict homomorphism of categorical groups (cf. [11], 6, Déf. 6; also [12], II, 1), that is, \bar{T} is a strict homomorphism of monoidal categories and, besides, $\overline{\mathrm{T}}\left(\mathrm{W}^{\sim}\right)=(\overline{\mathrm{T}})^{\sim}, \overline{\mathrm{T}}\left(\mathrm{f}^{\sim}\right)=(\overline{\mathrm{T}} \mathrm{f})^{\sim}$.

Let S be the set of those pairs (u, v) of morphisms of $\mathbb{C}, u: W \rightarrow W^{\prime}$, $v: V \rightarrow V^{\prime}$, such that $|W| \equiv|V|\left(\bmod \left|W_{0}\right|\right)$. Then, for $(u, v) \in S$ as above, there are isomorphisms $f_{u, v}: \overline{T W} \neq \bar{T} V, f_{u, v}^{\prime}: \overline{T W}{ }^{\prime} \gtrsim \bar{T} V^{\prime}$ such that, necessarily, $f_{u, v}^{\prime}{ }^{\circ} \bar{T} u=\bar{T} v^{\circ} f_{u, v}$.

Let $0=\left(D, \otimes, I^{\prime},()^{\sim}, a^{\prime}, \ell^{\prime}, r^{\prime}, \lambda^{\prime}, \rho^{\prime}\right)$ be a categorical group, with ($)^{\sim}$ the reciprocity functor and λ^{\prime} and ρ^{\prime} the reciprocity isomorphisms, and let $(F, \Phi, \mu, \xi): C Z \rightarrow D$ be a homomorphism of categorical groups (cf. loc. cit.; this means that (F, Φ, μ) is a homomorphism of monoidal categories and ξ is a natural isomorphism, where $\xi_{W}: F\left(W^{\sim}\right) \gtrsim(F W)^{\sim}$, such that $\lambda_{F W}{ }^{\circ}\left(\xi_{W} \otimes 1_{F W}\right) \circ \Phi_{W} \sim, W=\mu \circ F\left(\lambda_{W}\right)$ and $\rho_{F W}^{\prime}{ }^{\circ}\left(1_{F W} \otimes \delta \xi_{W}\right) \circ \Phi_{W, W^{\sim}}=\mu \circ F\left(\rho_{W}\right)$ for each W); we assume, in addition, that, for each $(u, v) \in S$ as above, there are given isomorphisms $g_{u, v}: F W \neq F V, g_{u, v}^{\prime}: F W^{\prime} \neq V^{\prime}$ with the property that $g_{u, v}^{\prime}{ }^{\circ} \mathrm{Fu}=\mathrm{Fv}^{\circ} \mathrm{g}_{\mathrm{u}, \mathrm{v}}$ and satisfying, besides the coherence conditions (A) - (C) of section 3, the following one: (D) For (u, v) $\in S$ as above, the following diagrams commute

(We note that for $\overline{\mathrm{C}} \boldsymbol{z}_{W_{0}}, \bar{T}$, etc., these conditions are trivially satisfied.) Then we construct a (unique) homomorphism of categorical groups (G, Ψ, ν, η): $\overline{\mathrm{C}}_{\mathrm{W}_{0}} \rightarrow 0$ such that $(G, \Psi, v, \eta) \circ(\bar{T}, i d, i d, i d)=(F, \Phi, u, \xi)$ and $G\left(f_{u, v}\right)=g_{u, v}, G\left(f_{u, v}^{\prime}\right)=g_{u, v}^{\prime}$ for each $(u, v) \in S$. Indeed, G, Ψ, and v are defined as in the previous case (cf. section 3), whereas η is defined by $\eta_{W}=\xi_{W}$. We note that the naturality of η follows from the commutativity of diagrams (5).

Thus, we have the following result:

PROPOSITION 2. There exists a strict homomorphism of categorical groups $\bar{T}: \mathbf{C Z} \rightarrow \overline{\mathbf{C}}_{W_{0}}$ such that, for each $(u, v) \in S, u: W \rightarrow W^{\prime}, v: V \rightarrow V^{\prime}$, there are iso-
 and that the $f_{u, v} s, f_{u, v}^{\prime} s$, and \bar{T} satis $f y$ the coherence conditions (A) - (D). And for any categorical group D as above, and homomorphism of categorical groups $(F, \Phi, \mu, \xi): C Z \rightarrow D$ such that, for $(u, v) \in S$ as above, there are given isomorphisms $\mathrm{g}_{\mathrm{u}, \mathrm{v}}: \mathrm{FW} \nsim \mathrm{FV}, \mathrm{g}_{\mathrm{u}, \mathrm{v}}^{\prime}: \mathrm{FW}^{\prime} \gtrsim \mathrm{FV}^{\prime}$ with the phoperty that $\mathrm{g}_{\mathrm{u}, \mathrm{v}}^{\prime}{ }^{\circ \mathrm{Fu}}=\mathrm{Fv}^{\circ} \mathrm{g}_{\mathrm{u}, \mathrm{v}}$ and that the $g_{u, v} s, g_{u, v}^{\prime}$, and (F, ϕ, μ, ξ) satisfy the coherence conditions (A) - (D), there is a unique homomorphism of categorical groups $(G, \Psi, v, \eta): \overline{C Z}_{W_{0}} \rightarrow D$ such that $(G, \Psi, v, \eta) \circ(\bar{T}, i d, i d, i d)=(F, \Phi, \mu, \xi) \quad$ and $G\left(f_{u, v}\right)=g_{u, v}, G\left(f_{u, v}^{\prime}\right)=g_{u, v}^{\prime}$ for each $(u, v) \in S$.

The meaning of the above proposition is that, under the more restrictive coherence conditions (A) - (D), $\overline{C Z}_{W_{0}}$ is a quotient category of $C Z$ as categorical groups.

Similarly to the treatment for $\mathrm{Cz}_{\mathrm{W}_{\mathrm{o}}}$ (cf. section 3), one can also consider natural transformations between homomorphisms (F, Φ, μ, ξ) and ($\bar{F}, \bar{\Phi}, \bar{\mu}, \bar{\xi}$) from CZ to D. Only, we consider group-like natural transformations. By a grouplike natural transformation $\sigma:(F, \Phi, \mu, \xi) \rightarrow(\bar{F}, \bar{\Phi}, \bar{\mu}, \bar{\xi})$ we mean a monoidal natural transformation, $\sigma:(F, \Phi, \mu) \rightarrow(\bar{F}, \bar{\Phi}, \bar{\mu})$ such that, in addition, the following diagram is commutative for any object W

(cf. also [12], II, 2, diagram (D.11)). Of course, the definition is valid for arbitrary categorical groups.

Thus, let, in addition to (F, Φ, μ, ξ), a homomorphism $(\bar{F}, \bar{\Phi}, \bar{\mu}, \bar{\xi})$ of categorical groups be given, and isomorphisms $\bar{g}_{u, v}$ and $\bar{g}_{u, v}^{\prime}$, similar to the $g_{u, v} s$ and $g_{u, v} s$, such that conditions (A) - (D) are satisfied, and let $\sigma:(F, \Phi, \mu, \xi) \rightarrow$ $(\bar{F}, \bar{\Phi}, \bar{\mu}, \bar{\xi})$ be a group-like natural transformation satisfying condition (T) of section 3. If $(\overline{\mathrm{G}}, \bar{\Psi}, \bar{\nu}, \bar{\eta})$ is the homomorphism $\overline{\mathrm{C}}_{\mathrm{W}_{0}} \rightarrow 0$ corresponding by Proposition 2 to $(\overline{\mathrm{F}}, \bar{\Phi}, \bar{\mu}, \bar{\xi})$, then there is a unique group-1ike natural transformation τ : $(G, \Psi, \nu, \eta) \rightarrow(\bar{G}, \bar{\Psi}, \bar{v}, \bar{n})$ such that $\tau \circ \bar{T}=\sigma$. Indeed, τ is defined by $\tau_{W}=\sigma_{W}$ for any word W.

References
[1] EHRESMANN, C., Structures quasi-quotient, Math. Annalen, Vol. 171, 1967, 293-363. (Also in "Charles Ehresmann: Oeuvres complètes et commentées", Partie III-1 commentée par Andrée Charles Ehresmann, Amiens, 1980, no/100/, 209-279.)
[2] EILENBERG, S. and KELLY, G.M., A generalization of the functorial calculus, J. of Algebra, Vol. 3, 1966, 366-375.
[3] EILENBERG, S. and KELLY, G.M., Closed categories, Proc. Conf. on Categorical Algebra, La Jolla, 1965, Springer-Verlag, New York, 1966, 421-562.
[4] LAMBEK, J., Functional completeness of cartesian categories, Ann. of Math. Logic, Vol. 6, 1974, 259-292.
[5] LAPLAZA, M.L., Coherence for categories with group structure: An alternative approach, J. of Algebra, Vol. 84, 1983, 305-323.
[6] MAC LANE, S., Natural associativity and commutativity, Rice Univ. Studies, Vol. 49, 1963, 28-46.
[7] MAC LANE, S., Categories for the Working Mathematician, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
[8] PAREIGIS, B., Categories and functors, Pure and App1. Math., Vo1. 39, Academic Press, New York-London, 1970.
[9] SOLIAN, A., Groupe dans une catégorie, C.R. Acad. sc. Paris, Série A, Vol. 275, 1972, 155-158.
[10] SOLIAN, A., Coherence in categorical groups, Comm. in Algebra, Vol. 9(10), 1981, 1039-1057.
[11] SOLIAN, A., Catégories quotient et la construction des groupes et des monoldes catégoriels libres, Annales des sc. math. du Québec, Vol. 8, No 2, 1984, 197-222. (Preliminary report in Abstracts A.M.S., Vol. 2, No 4, June 1981, p. 402, \#81T-18-340.)
[12] ULBRICH, K.-H., Kohbrenz in Kategarien mit Gruppenstruktur, I., J. of Algebra, Vol. 72, 1981, 279-295; II., ibid., Vol. 81, 1983, 279-294.

Department of Mathematics
The University of North Carolina at Charlotte
Charlotte, N.C. 28223, U.S.A.
Manuscrit reçu le 15 Gévrier 1985

