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ACATEGORICALANALOGUE OFZ,, 
A l e x a n d r u  S o l i a n  

R é s u m é  

Si Wo e s t  u n  o b j e t  n o n  n u l  d u  N  c a t é g o r i e l  ( d é s i g n é  C N ) ,  V o n  c o n s -  

t r u i t  u n e  c a t é g o r i e  C Z W  ,  q u i -  s i  l ’ o n  i m p o s e  c e r t a i n e s  r e s t r i c t i o n s  a u  c o n c e p t  

d e  c a t é g o r i e  q u o t i e n t  ( C F .  C l l l )  -  e s t  u n  q u o t i e n t  d e  C N .  C o m m e  C N ,  C Z W  e s t  
0  

u n e  c a t é g o r i e  m o n o Y d a l e ,  m a i s  p o s s è d e  e n  p l u s  u n e  s t r u c t u r e  d e  g r o u p e  c a t é g o r i e l  

( c f .  ClOl) . 

I f  
w O  

i s  a  n o n - z e r o  a b j e c t  o f  t h e  c a t e g o r i c a l  N  ( d e n o t e d  b y  

c a t  e g o r y  C Z w  i s  c o n s t r u c t e d ,  w h i c h ,  u n d e r  c e r t a i n  r e s t r i c t i o n s  o n  t h e  c o n c e p t  o f  

a  q u o t i e n t  c a F e g o r y  ( c f .  L X ] ) ,  i s  a  q u o t i e n t  o f  C N .  L i k e  C N ,  C Z w  i s  a  m o n -  
0  

o i d a l  c a t e g o r y ,  b u t  h a s ,  i n  a d d i t i o n ,  a  c a t e g o r i c a l  g r o u p  s t r u c t u r e  ( c f .  C l O l )  .  

0 .  I n t r o d u c t i o n  

I f  w e  a g r e e  t o  c a l 1  % a t e g o r i c a l  a l g e b r a ”  t h e  a l g e b r a  o f  t h o s e  s t r u c t u r e s  

w h i c h  a r e  d e f i n e d  o n  c a t e g o r i e s  r a t h e r  t h a n  o n  s e t s ,  t h e  “ b i n a r y  r e l a t i o n s ”  o c c u r -  

r i n g  i n  * ‘ s e t - t h e o r e t i c a l  a l g e b r a f f  m i g h t  b e  r e p l a c e d  b y  f f  (iso)morphismsff . C o n s e -  

q u e n t l y ,  w h e n  q u o t i e n t  c a t e g o r i e s  a r e  f o r m e d ,  i n s t e a d  o f  s i m p l y  i d e n t i f y i n g  t h e  

“ e q u i v a l e n t f f  a b j e c t s ,  o n e  o n l y  h a s  t o  c o n s t r u c t  c a n o n i c a l  i s o m o r p h i s m s  b e t w e e n  

t h e m .  S i n c e  t h e  m o r p h i s m s  a l r e a d y  e x i s t i n g  i n  t h e  o r i g i n a l  c a t e g o r y  m u s t  b e  a l s o  

t a k e n  i n t o  a c c o u n t ,  o n e  c o n s i d e r s  p a i r s  o f  “ e q u i v a l e n t f f  m o r p h i s m s  a n d  c o n s t r u c t s  
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two isomorphisms, one between the domains, the other one between the codomains, of 

such morphisms, SO that the diagram resulting in the quotient structure is commu- 

tative. This approach was taken in [HI, where we dealt with the general situation. 

We note that C. Ehresmann has introduced and studied the concept of ~uu.&& 

qu0&&& &&..u&~ c 1~. It would be interesting to study how the above concept 

of quotient relates to that of quasi-quotient, and to describe possible situations 

when the two concepts intersect. 

In the present paper, we apply, in a certain sense, the results of Cl11 to 

a specific case. Namely, we consider the categorical analogue of the construction 

of the additive g&oup Zn of cosets modulo a (positive) integer n from the ad- 

ditive munuti N of natural numbers. In the set-theoretical case, natural numbers 

that are congruent modulo n are Ydentified? In the categorical case, starting 

from the categorical analogue of N (cf. [7], VII.l.), which we denote by CN, and 

which is a monoidal category, and from a non-zero abject W. of CN (*‘non-zero’* 

meaning “different from the unit obj ect”), we only add isomorphisms and obtain a 

cat egorical group - alt ernat ively, a category with group structure - CZ 
wO 

, which 

is the categorical analogue of Zn. (For the concept of categorical group, see 

[lOJ; an earlier variant was called *‘groupe dans une catégorie”, cf. [91; for the 

concept of category with group structure, see [12J, 1 and [SI; a11 of these are 

slight variations of the same concept .) More specifically, the abjects of CZw 
0 

are the abjects of CN, i.e., words built up with two symbols, (t) and 1, and 

the morphisms are, besides those between words of the same length, as in CN, those 

which link words of lengths congruent modulo the length of W. (thus, the construc- 

tion depends only on the length of Wo) . 

In this connection, we mention the construction used by Lambek (141, 1.4.) 

to adjoin a new assumption to a conjunction calculus and to include a11 proofs based 

on this assumption. 

Under certain restrictions - called the cu&zcnce cuntiunh - on the 

concept of a quotient category, CZw turns out to be a quotient monoidal category 
0 



of CN (the analogue of the fact that Zn is a quotient monoid of N). Namely, 

uwO 

has the universal property for the monoidal categories P and the homomor- 

phisms CN + P such that V contains isomorphisms as above and the coherence con- 

ditions are satisfied. This is proved in section 3 of the paper. In section 6, we 

construct another categorical analogue of Zn, denoted cZw , this time starting 

from the categorical analogue Cz of z (cf. Dol, 2, Ex.O(5)). And aw turns 
0 

out to be a quotient category of CZ as a categorical group; that is, the universal 

property holds with respect to categorical groups and their homomorphisms such that, 

for the ?anonical!’ isomorphisms, (additional) coherence conditions are satisfied. 

In section 5, we take a first step in the direction of proving a categorical ana- 

logue of the property that a (set-theoretical) monoid of finite t’exponent’f is a 

group. Essentially, what is missing is the (di)naturality (cf. r_71, IX.4. ; also 

12 1) of the reciprocity isomorphisms . We suggest that this difficulty might be, 

however, overcome by using other types of quotient structures. 

1. In C71, VII.2., there is given the construction of the categorical analogue 

of N. This analogue, denoted in the sequel by CN, is the free monoidal category 

on one generator (cf. lot. cit .) . Intuitively, instead of identifying the different 

“ob j ect 9’ obtained by adding together the same number of copies of 1 (the genera- 

torl9 one distinguishes between these abjects; only, they are to be isomorphic. 

Formally, CN is a category having as obj ects forma1 expressions (or words) in two 

symbols, (+) and 1 (the latter called sometimes the empty Word), connected by 

a symbol 0. That is, (+) and 1 are words; and if Wl and W2 are words, SO 

is (Wl)RW2) l 
(Subsequently, we will omit the parentheses whenever possible, as, 

for example, in the last expression.) The &ngZ/z [W [ of a word W is defined by 

induction as follows : [C+l[ =L 111 =o, Pp5l = lyl i- lw21 l 

The morphisms 

of CN are the following: If W and V are words of the same length, there is 

exactly one morphism w + v; otherwise, none. Since between any two abjects there 

is at most one morphism, composition is clear. We note that a11 morphisms are iso- 

morphisms. The cat egory CN becomes a monoidal category if we define the multipli- 

cation of words by (Wl,W2) t-+ WlClW2 and correspondingly for morphisms. The unit 



obj ect is 1. Since a11 diagrams commute, naturality and coherence are trivially 

sat isfied. 

In ClOl, 2., Ex. (5) , the categorical analogue of E (denoted CZ) is 

defined. Since this time we need a %egative generatorl’, we use an additional symL 

bol, (-). Formally, the abjects are words built up with three symbols, (+) 3 C-l, 

and 1, connected by the symbol Il. Now we allow negative lengths. We define 

I(t) 1 = 1, i(-) 1 = -1, II[ = 0, IWlUW2[ = [wJ t [W21. Again, there is exactly 

one morphism W -+ V if lW[ = IVI; otherwise, none. But now, for example, there 

are (iso)morphisms (+XX-) 2 I and (-)Cl(t) 2 1. We obtain a monoidal category 

by defining the multiplication in the same way as for CN, with 1 the unit abject. 

There is, in addition, a reciprocity functor ( )-: (CZJop -+ CZ, defined by 

( ) t w = (-), (-)- = (t), I- = 1, (WlUW2)- = (W2)71(Wl)-. We have (W-)- = W for 

any word W; and if we denote by xw: W%V -+ 1, pw: WDW- + 1 the only possible 

morphisms (with the corresponding domains and codomains), we have Awm = pw, 

oW_ = lw. Thus, we obtain a categorical group (cf. Cl01 and Cg]); also a category 

with group structure (cf. Ulbrich L-121, 1. and Laplaza [SI). 

2. We define the categorical analogue CZw of Z n, the ‘*additive” group of 
0 

congruence classes modulo n as obtained by starting from natural numbers. In- 

stead of identifying natural numbers to obtain congruence classes, we use isomor- 

phisms to link those words from CN which have congruent lengths modulo the length 

of the given Word, Wo, which plays the role of n. 

Let W. #= 1 be a fixed word in CN. (If W. = 1, there will be no dif- 

ference between CN and CZw , and the latter will not have a group structure in 
0 

the manner defined for the case W. + 1.) We construct the following category, de- 

noted CZw , the cahgmical andkgue ud Zn: The abjects are those of CN. If w 
0 

and V are such obj ects, there is exactly one arrow W + V if lwl f WI md lwoll; 
otherwise, none. In part icular , a11 the morphisms of CN are also morphisms of 

awo l 

Again, there is at most one morphism between two given words, and therefore 

a11 diagrams commute; and each morphism is an isomorphism. We define a 



multiplication on the set of 

i = 1,Z , are morphisms, we have 

sequently, lW&JW*l E lVlLlV2l (mod 

W1lP*+VOV l 12 
The multiplication 

same rule as for CN. And if fi: Wi + Vi, 

lwil z lvil (mod 1~~1) , i = 1,~ , and, con- 

lwoll 9 SO that there is a morphism f1Df2: 

is a functor, and if we define the unit abject 
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1, and the associativity and left and right unit isomorphisms in the only 

possible way, we obtain a monoidal category. 

Now, we cari use a selection process to choose, for each abject W, a W- 

such that there are isomorphisms * pw: WUW- 2 1 and Aw: W-IJW 2 1. (This means 

that CZw is defined up to this selection process.) Indeed, since the set of 
0 

words has the cardinality of N, let us consider a well-ordering of type ti in 

this set, with 1 the first element. We define I- k 1; and if a W is already 

of the form V- for a previous V, we define W- = V; if this is not the case, we 

Select arbitrarily a W- such that 1~1 + Iw-1 is a multiple of 1~~1 and W- 

has not been previously utilized; this is possible since at each step only finitely 

many abjects have been previously selected as W-s. Now, since [WI t I~~l0 

(mod Iwoi), there are unique isomorphisms pw and h as above, which satisfy the 

dinaturality conditions (cf: C71, IX.4.; also CZI) since in CZw a11 diagrams 
0 

commute. And since by the above selection process we have (W-)- = W for each W, 

a11 the axioms for a categorical group are satisfied, including % h = F W' Pww = Aw 

for any W. 

3. We want to prove that CZw is a quotient monoidal category of CN with 
0 

respect to some set S of pairs of morphisms, in a sense slightly modified from 

that of Clll, 3., Th. 3. In that paper, a (small) monoidal category C was given 

together with a set S of pairs of morphisms of C. We constructed a monoidal 

category C/S and a strict homomorphism T: C + C/S such that for every (u,v) c S, 

u: A + A', v: B+B', there are isomorphisms fu v: TA 2 TB, f; v: TA' 2 TB' 
9 3 

rendering commutative the diagram 
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TA = TB 

Tu 1 f; v 1 Tv l 

TA’ '=TB' 

Besides, (C/S ,T) has the universal property that for each (small) monoidal cate- 

gory P and (not necessarily strict) homomorphism (F,@,p): C -+ 0 (cf. Definition 

1, below) such that, for as above, there are given isomorphisms 

g u,v: FA 2 FB, g;,v: FA' 2 FB' rendering commutative the diagram 

g 
FA ZFB 

FA' - 

there exists a unique homomorphism (G,Y,v) : c/s -5 v such that 

(G,Y,v) 0 (T,id,id) = (F,@,p) and G(fu v) = g 
> u,v' 

G(fh v) = g; v for any 
9 9 

(u,v) E s. Here we require an additional condition, namely, the one given by the 

following definition: 

DEFINITION 1. 

functor denoted by @ in both, and with the unit abjects 1, 1’9 respectively. 

be monoidal categories, with the multiplication 

Let S be a set of ordered pairs of morphisms of C. Let (F,@,u): C + P be a 

homomorphism of monoidal categories, where F:c+v is a functor between the 

underlying categories, @ is a natural isomorphism such that @X Y: F(X@Y) 2 FXRFY 
9 

for abjects X, Y of C, and p is an isomorphism FI 2 1'. Let us assume that 

for each (u,v) c s, u: A -+ A*, V: B -+ B*, there are given isomorphisms gu v: 
9 

FA 2 FB, g' u,v: FA' 2 FB' of V such that diagram (2) commutes. Then the follow- 

ing conditions on the gu vs, g' s, and (F,Q) are called the cdmence cm& 
9 u,v 

If are pairs from S, then 

g v,w 0 gu v = gu w and g; w 0 g: v = g; w; (B) If (u,v) E S and domain = 
9 9 9 9 9 

domain( then gu v is the identity; and if codomain(u) = codomain(v), then 
9 

g’ u9v 
is the identity; (G) If (u1,v1), (u29v2) and (ul@~~,vl@v~) are pairs 

from S, with uî: A. -+ Ai3 vi: B. -+ B$ i 1 1 
= 1,2, then the following diagrams 

commute 
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(31 l l @ 
l@g 

Bl,B2 
g 
ul,vl u2,v2 

FAl@FA2 p 
FB @FB 

1 2 

@Ai ,A; 

l 
FAimFA; 

g’ C?g’ 
ul,vl u2,v2 

- 
1 @Bi,Bi 

FB ?%FB; 

(Actually, the commutativity of diagrams (3) is a relaxation of the conditions 

gul@u2,vl@v2 = gu @g , etc., which correspond to the case when @ is the 
l,vl u2,v2 

identity.) 0 

The approach in [lll was a general one, and, besides, we were not concerned 

about the relationships between, for example, g 
u,v 

, gv,w, mcl gu,w l lk h411 

turn out (see Proposition 1, below) that if we impose these more restrictive condi- 

tions, CZW is, up to an isomorphism, 9hef1 quotient category CN/S for some 
0 

convenient S ; if we did not require these conditions, the quotient category would 

probably have to be ‘*riche?*, i .e., to contain more morphisms. Thus, the next re- 

sult is a characterization of CZW as a quotient monoidal category of CN under 
0 

the assumption that the coherence conditions hold, (And Proposition 2 of section 6 

has a similar interpretation, only, in terms of categorical groups instead of mon- 

oidal categories ,) A general treatment of the quotient categories, as described 

in Part 1 of [lll, but such that the coherence conditions are satisfied, should be 

done in another paper. 

Let S be the set of a11 ordered pairs (u,v) of morphisms of CN such 

that, if u: W -+ W*, v: V -+ V’, then [WI E [V[ (mod [Woi) (and hence, necessari- 

lu, IW’i E IV* 1 bod [Wo[ll. 

We have the following result: 

PROPOSITION 1. Tlme exiAZ4 a ht&.$ humomoqddn od monoidat categotiu 

T: CN + CZ 
wO 

a.dz d.a.X, dot euci2 (u,v) E S cu above, hY~e au i4omoqdzimA 

f u,v: TW 2 TV, f;,v: TWI 2 TV! kn CZwo ti!z X~X ~&O~U~.@ Xk& fA,v 0 Tu = 

TV 0 fu v and T &&~~y &e coh&Utnce condiaXon& 
9 

and tizaA X!E fu vs, f; vs, 
9 9 

Ad do& any monoidaL ca&go&y P = (V,@,~f,af ,k?,r’) and homomo@Am 06 monotial 

. - .- 
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UztegotieA (F,Q): CN -+ 0 

givw ihomoq3h.iAm4 g 
WV 

: FWkFV, g’ 
u,v 

: FW’ 2 FV’ in P tik Xk pkopkWy h.t 

g’ U9V 
o FU = FV 0 gu v and h.xt Xix gu vs, g; ,,s, and (F,@,P) htizjy A%? co- 

9 9 9 

izeunce condLtLon.4, J&U i.h a un.Que h.omomoq9hhm 06 monoidat wtegotieh 

CZ~ + P AU& Xku.X (G,Y,v) 0 (T,id,id) = (F,Q) and 

WL J = g; v 

G(fu v) = gu v 9 
9 9 

&vL euch (u,v) E s. 
9 9 

PROOF. Let T be the functor which is the identity on abjects and maps each mor- 

phism to itself. If (u,v) E S as above, then, by the definition of CZw , there 
0 

is exactly one isomorphism f :TW 
u,v 

=WkTV = V, and one f; v: TW’ = W’ 2 TV’ 
9 

= V’. By its very definition, T is a strict homomorphism of monoidal categories. 

The equations fu v 0 Tu = TV 0 fu v and the coherence conditions hold since in 
9 9 

czW 
0 

a11 diagrams commute. 

NOW, for the universal property, let us define VI = F(W) for any word 

w. If f: w + v is a morphism of CZw , then 
0 

[W[ E IV[ (mod [wo[). Consequently, 

the pair (lw,lv) is in S, and there are isomorphism gl 1 , gi 1 from FW 
w’ v W’ v 

to FV in P such that the corresponding diagram (2) commutes, that is, 

= glw,lv l 

We define G(f) = gl 1 . (In the sequel, 
w’ v 

we will Write gw v 
9 

instead of gl 1 .) Then G is a functor, according to the coherence conditions 
w’ v 

(A) and (B) . 

We define Y by Yw w = Qw 
1’ 2 

w ; and v by v = p. Then Y is natural, 
1’ 2 

Indeed, if fi: Wi + Vi, i = 1,2, are morphisms of CZw , then 
0 

wpy = 
gwp+pJ~ ' 

and the naturality of Y follows from the coherence 

condition 

Let us show that G 0 T = F. The two functors have the same effect on 

words . Let f: W + V be a morphism of CN. Then 1 w 1 = 1 VI , and hence the pairs 

(lw,f) and (f,lv) are in s. Using conditions (A) and (B), we obtain the (com- 

mutat ive) diagram 
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FW 
gf9 +f 

- FV 

giw,f 
Ff 
1 

gf,lv=id FIV 

FW - FV - FV 

TO prove that (G#YM is a homomorphism of monoidal categories, we must 

show that 

‘&,v (-‘&/ G&/ OcyW Wslm joy 
1 2 3 1 2 3 'lm2"3 

= (1GWl~yW2,W3)oyWl,W2~W30G(aWl,W2,W3)~ 

O(U91 rGW"(lGW~)oyW 1 = (W) 9 

for any words Wl, W2, W3, W. This is easy, since we may replace everywhere G bY 

F, Y by a, and v by u, and the resulting identities hold because (F,@,u) is 

a homomorphism. By the definitions of Y and v it follows that 

(G,YJO 0 (T,id,id) =n (F,@,u). 

Let us prove that if (u,v) E s, with u: W + W*, v: V + Vf, then 

G(fu v) = gu v , G(f; v) = g; v. Since (lw,,u) and (v,lv,) are in !& we obtain, 
5 9 9 9 

using conditions (A) and (B), the (commutative) diagram 

gl W4 g 
g 

u,v v,l 
FW' P FW - FV " - FV' 

FlW, 
l giw,u =id l 

Fu Fv 

g' l g' v,l 
=id l 

F+f, 

FW' FW' & FV' V' 
- FV' 

and GCfA vl = &f vf = iZi* VI 9 9 9 = Et; 1 Oi?h v”g-i The other equation is 
yvt 9 Wd = g;,y 

proved in a similar fashion. 

TO prove that (G,Y,v) is unique with the above properties, we only show 

that if (Gf,Yf,vf) is another such homomorphism, then G'(f) = G(f) for any mor- 

phism f: W+V of czw. 
0 

Indeed, since (lw,lv) E s, there must be an fl 1 : 
W' v 

W+V in 
UWo* 

Then f = f 
1WJV 

and G'(f) = G'(fl, 1 ) = gl 
w' v 

1 = G(f). The 
w' v 

other points of the uniqueness proof are clear. Cl 



O n e  c a r i  t a k e  a  s t e p  f u r t h e r ,  a n d  d e a l  w i t h  n a t u r a l  t r a n s f o r m a t i o n s .  L e t ,  

i n  a d d i t i o n  t o  ( F , @ , p ) ,  t h e  g u  v s  a n d  g :  v s  a s  i n  P r o p o s i t i o n  1 ,  a  h o m o m o r p h i s m  
9  9  

F , m  a n d  i s o m o r p h i s m s  g  a n d  
u 9 v  

i u  v  b e  g i v e n ,  s a t i s f y i n g  t h e  s a m e  c o n d i -  
9  

t i o n s ,  a n d  l e t  b e  a  m o n o i d a l  n a t u r a l  t r a n s f o r m a t i o n  ( c f .  [ 3 1 ,  

1 1 . 1 ) ;  t h a t  i s ,  o  i s  a  n a t u r a l  t r a n s f o r m a t i o n  F + Î ?  a n d ,  i n  a d d i t i o n ,  

cJw @u )Gw w = Tw 
lW2 1’2 

w  0 0  

1’ 2 w l m 2 ’  
; o  o 1  = p  

f o r  a n y  w o r d s  W l ,  W 2 .  L e t  u s  a s s u m e  t h a t ,  i n  a d d i t i o n  t o  t h e  c o h e r e n c e  c o n d i t i o n s  

( A )  -  ( C ) ,  t h e  f o l l o w i n g  c o n d i t i o n  i s  s a t i s f i e d :  ( T )  F o r  a n y  ( u , v )  E  s ,  

u :  W - + W ’ ,  v: v -F V’, t h e  d i a g r a m s  

F W  

W  
l  

m  

F W  ’  
i f ?  

& F V 1  

a r e  c o m m u t a t i v e .  I n t u i t i v e l y ,  t h e s e  c o n d i t i o n s  m e a n  t h a t  i f  F  i s  t o  “ c h a n g e ! *  

i n t o  Ï ? ,  t h e  c h a n g e  m u s t  b e  c o n s i s t e n t  w i t h  t h e  c h a n g e  i n  t h e  g u  v s  a n d  t h e  
9  

g’ s. 
u 9 v  

T h e n ,  d e n o t i n g  b y  ( G , Y , v )  t h e  h o m o m o r p h i s m  C Z w  - +  P  g i v e n  b y  P r o p o s i -  
0  

t i o n  1 ,  a n d  b y  ( c , F , T )  t h e  c o r r e s p o n d i n g  h o m o m o r p h i s m  f o r  
- - -  

( F , @ , p ) ,  t h e r e  i s  a  

u n i q u e  m o n o i d a l  n a t u r a l  t r a n s f o r m a t i o n  T :  ( G , Y , v )  - +  ( G , Y , v )  s u c h  t h a t  T O T  =  o ,  

w h e r e  0  r e p r e s e n t s  t h e  h o r i z o n t a l  c o m p o s i t i o n  i n  t h e  2 - c a t e g o r y  o f  m o n o i d a l  c a t -  

e g o r i e s ,  m o n o i d a l  f u n c t o r s ,  a n d  m o n o i d a l  n a t u r a l  t r a n s f o r m a t i o n s .  I n d e e d ,  o n e  d e -  

fines ~~ = ow for any abject W of CN (or of CZw ) . 
0  

4 .  T h e  c a t e g o r i e s  C N ,  C Z  9  a n d  C Z w  a r e  i n  f a c t  s y m m e t r i c  m o n o i d a l  c a t e g o -  

r i e s  ( c f .  C 7 1 ,  V I I . 7 ) .  M o r e o v e r ,  t h e  g r o : p  s t r u c t u r e s  o n  CZ and CZw a r e  

a b e l i a n  ( c f .  C l 2 1  a n d  C 5 1 ) ,  o r  s y m m e t r i c  c a t e g o r i c a l  g r o u p s  ( c f .  C l l l ,  i ) .  T h i s  

m e a n s  t h a t  t h e r e  i s  a  s y m m e t r y  n a t u r a l  i s o m o r p h i s m  
c W l  , W 2  

:  W l C l W 2  2  W 2 C l W l  w h i c h  i s  

j o i n t l y  c o h e r e n t  w i t h  t h e  a s s o c i a t i v i t y  a n d  u n i t  i s o m o r p h i s m s .  W e  c a r i  e x t e n d  t h e  

p r o p e r t i e s  g i v e n  i n  s e c t i o n  3 ,  S O  t h a t  t h e y  w o u l d  r e f e r  t o  s y m m e t r i c  m o n o i d a l  c a t -  

e g o r i e s .  I n d e e d ,  T: CN + CZ 
w O  

i s  a  s t r i c t  h o m o m o r p h i s m  o f  s y m m e t r i c  m o n o i d a l  
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c a t e g o r i e s .  A n d  i f  D ,  a s  d e f i n e d  i n  t h e  s t a t e m e n t  o f  P r o p o s i t i o n  1  o f  s e c t i o n  3 ,  

i s ,  i n  a d d i t i o n ,  a  s y m m e t r i c  m o n o i d a l  c a t e g o r y ,  w i t h  t h e  s y m m e t r y  n a t u r a l  i s o m o r -  

p h i s m  c ' ,  a n d  ( F , @ , u )  i s  a  h o m o m o r p h i s m  f o r  t h i s  s t r u c t u r e  ( m e a n i n g  t h a t ,  i n  a d -  

d i t i o n  t o  b e i n g  a  h o m o m o r p h i s m  o f  m o n o i d a l  c a t e g o r i e s ,  t h e  e q u a t i o n s  

c& FW O’W W = ‘W 
1' 2 1' 2 

W OF($ 
2' 1 

W 1 
1' 2 

a r e  s a t i s f i e d  f o r  a n y  w o r d s  W l ,  W 2 ) ,  t h e n  

( G , Y , v )  o f  s e c t i o n  3  i s  a l s o  a  h o m o m o r p h i s m  o f  s y m m e t r i c  m o n o i d a l  c a t e g o r i e s ;  a n d ,  

o f  c o u r s e ,  i t  i s  u n i q u e .  

5. T h i s  s e c t i o n  m a y  b e  c o n s i d e r e d  a s  a  f i r s t  s t e p  i n  t h e  d i r e c t i o n  o f  o b t a i n -  

i n g  a  c a t e g o r i c a l  a n a l o g u e  o f  t h e  p r o p e r t y  t h a t  a  ( s e t - t h e o r e t i c a l )  m o n o i d  o f  f i n i t e  

e x p o n e n t  ( t h a t  i s ,  s u c h  t h a t  t h e r e  i s  a  n a t u r a l  n  +  0  w i t h  t h e  p r o p e r t y  t h a t  

n  
X = 1  f o r  a n y  x )  i s  a  g r o u p .  O f  c o u r s e ,  i n s t e a d  o f  a s s u m i n g  t h a t  x n  =  1 ,  w e  

wO 
a s s u m e  t h a t  t h e r e  i s  a  n a t u r a l  i s o m o r p h i s m  7 ~ ~ :  A  2  1 '  for a fixed W. + 1 from 

C N ,  w i t h  t h e  p r o p e r t y  t h a t  I T  i s  j o i n t l y  c o h e r e n t  w i t h  t h e  a s s o c i a t i v i t y ,  e t c .  I t  

i s  l i k e l y  t h a t  s u c h  a  s t r u c t u r e  c a r i  b e  c o n s t r u c t e d  u s i n g  m e t h o d s  d e s c r i b e d  i n  [ l l l .  

H e r e  w e  o n l y  r e c o v e r  p a r t  o f  t h e  g r o u p  s t r u c t u r e .  E s s e n t i a l l y ,  w h a t  i s  m i s s i n g  i s  

t h e  ( d i ) n a t u r a l i t y  o f  t h e  r e c i p r o c i t y  i s o m o r p h i s m s .  

Let P = ( Z ? , @ , I ~ , a * , . & r * )  b e  a  m o n o i d a l  c a t e g o r y .  I f  W  i s  a n  a b j e c t  

of CN, then a functor ( ) ' :  D  - +  0  w i l l  b e  d e f i n e d  i n  t h e  f o l l o w i n g ,  i n d u c t i v e ,  

m a n n e r :  I f  w =  1 , t h e n  ( ) ' =  K I ,  , t h e  c o n s t a n t  f u n c t o r  1 ' ;  i f  W  =  ( + ) ,  t h e n  

( )  
W  = idD; if W 

wl w2 
=  ( W l ) O ( W 2 ) ,  t h e n  A '  =  A  @ A  f o r  a n y  a b j e c t  A ,  a n d  s i m i l a r -  

l y  f o r  m o r p h i s m s .  

N o w ,  l e t  W .  f  1  b e  a  f i x e d  a b j e c t  o f  C N ,  a n d  l e t  u s  a s s u m e  t h a t  t h e r e  

i s  g i v e n  a  n a t u r a l  i s o m o r p h i s m  

wO 
7x0 AK 

1' l 

L e t  u s  a s s u m e ,  i n  a d d i t i o n ,  t h a t  a ' ,  k?, 9 ,  a n d  V T  a r e  j o i n t l y  c o h e r e n t ,  w h i c h  

h e r e  m e a n s  t h a t  a n y  d i a g r a m  i n  v w h o s e  a r r o w s  a r e  b u i l t  u p  v i a  60 a n d  c o m p o s i -  

t i o n  w i t h  i n s t a n c e s  o f  a ? ,  &  I ,  7 T ,  t h e i r  i n v e r s e s ,  a n d  i d e n t i t i e s  i s  c o m m u t a -  

t i v e .  L e t  u s  c a l 1  s u c h  a r r o w s  canuticak 



Then, for any abject A of 0, there exists a strict homomorphism FA: 

CN + P such that, for the s defined in 3, there are gu vs 
9  

and g; vs in p, 
9  

b w ~  c s making the analogues of diagram (2) commute and such that the coherence 

Condit>ions (cf. Definition 1 of 3) are satisfied. Indeed, we define FA(W) to be 

A' and if f: W -+ V is a morphism of CN, then FA(f) is the unique morphism 

A' + AV which is built up with instances of a', Ll, r', their inverses, and iden- 

tities (the rs are not included). Then FA is a strict homomorphism. (We note 

that this is the homomorphism described as w t+ wb for a fixed b by Mac Lane in 

171, VII.2.) 

If W, V are abjects of CN such that [WI z [Vi (mod lwo[), thon there 

is a (unique) canonical arrow FW+FV. A A Indeed, let [WI = n, [woI = no, and 

let n= kno + r with 0 2 r < no. Since for words S, T having the same length 

there is a canonical morphism As + AT , it suffices to show that if U is a word 

of length r and if we set U = u, 

ut u 
0  ut+l = WoOUt~ then there is a canonical mor- 

phism bt: A + A for any natural t. We define bo: A u u -+ A to be the identi- 

ty, and bl the composite of 

U 
A1 

W 
= A '@Au 

nA@id 
- IIQAu-% Au; 

and if b t  
has been defined, b t+l 

is the composite of 

U A ttl W Ut id@bt W. 
= A '@A - A @Au LAU. 

Consequently, if (u,v) E s, with u: W -+ WI, v: V + VI, then 14 E NI bnod lwoll 
and 1~~1 f IV?~ (mod [woI), SO that there are canonical morphisms A' + AV and 

A" + A" ;  and we define gu v and to be, respectively, these morphisms. 
9  g; v 9  

Since FA~, FAv, gu v, g; v are canonical, we must have 
9  9  

g; voFu = Fvogu v, as a, 
9  9  

L ,  r, T are jointly coherent; and, for the same reason, the coherence conditions 

U V  - (C) of section 3 must be satisfied. 

According to Proposition 1 of 3, there is a unique (necessarily strict) ho- 

momorphism GA: + P such that GAoT = FA and GA(fu v) = gu v 9 
3  9  
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$.p; J = lz; v 
for each (u,v) E S. 

9 9 

Now, we cari find for the given A an A- and canonical isomorphisms 

AA: A-@AA I’, o;: ABA- 2 1’. Indeed, we set AM = GA(-) = GA((+)-) . Since there 

are isomorphisms (-)O(t) 2 1 and (t)O (-) 2 1 in CZW , their images under GA 
0 

are canonical, and these are 1A and Q, respectively. Since in diagram (1) of 

[ 101 (with s, d, o, 8 changed to L, r, A, o, respectively) a11 arrows are canoni- 

cal, it is commutative. Of course, we cari do that for any abject A of D. 

Al1 this does not mean, however, that P with the described structure is 

a categorical group, as we did not prove the 1% and o *s to be (di)natural (cf. 

[ 71, IX.4; also [21), neither (A-)- to be A, etc. We only showed that, under 

the above hypotheses, we recover part of the group structure. 

6. The construction of CZw , as provided in section 2, is, of course, analo- 
0 

gous to that of Zn, n natural, starting from the monoid N of natural numbers 

and forming congruence classes modulo n, of natural numbers. The structure be- 

cornes a group just by adding new relations, and this was actually shown to happen, 

for this special case, also in the categorical setting, provided we replace the 

3elationP by IV( iso)morphismP . We cari start, however, from the categorical group 

structure carried by CZ (cf. section 1) and construct another categorical analogue 

of zn. 

If we do that, this %ew” analogue, which we denote by aw , is to be de- 
0 

fined in a somewhat different way. First, we start with CE instead of CN (cf. 

section 2) . Next, let W. be an abject of CZ such that iwoi > 0. (If 

Il wO 
= 0, we do not obtain additional morphisms, and rZw is the same as CZ, as 

0 

in the set-theoretical case; if IWol < 09 we cari replace W. bY q> which has 

positive length, and obtain the same ëZw .) The abjects of % are the abjects 
0 0 

of cz. There is exactly one morphism W + V if 1~1 z IV~ (mod 1~~1); otherwise, 

none. The multiplication and reciprocity functors are defined on abjects in the 

same manner as those of CZ; and then, on morphisms, in the only possible manner. 



We note that, in contrast to CZw , there is no longer a selection process involved. 
0 

The functor ?i!: CZ -+ aw which maps each abject and morphism to itself is now a 

strict homomorphism of cLtegorica1 groups (cf. [llj, 6, Déf. 6; also cl21, II, l), 

that is, T is a strict homomorphism of monoidal categories and, besides, 

T(W_) = (TW)_, T(f-) = (Tf)Y 

Let S be the set of #those pairs (u,v) of morphisms of CE, u: W -+ W! , 

v: V + V’, such that 1 WI f 1 VI (mod 1~~1). Then, for (u,v) E s as above, there 

are isomorphisms f 
u>v 

: fi2 TV, f; v: 7%’ 2 TV? such that, necessarily, 
9 

f; v% = RPfu v . 
9 9 

Let P = @,@,I*,( )- ,a*,&r~,P,~‘) 
- 

be a categorical group, with ( ) 

the reciprocity functor and P and P’ the reciprocity isomorphisms, and let 

wbb~~~ cz + ZJ be a homomorphism of categorical groups (cf. lot. cit. ; this 

means that (FSU-0 is a homomorphism of monoidal categories and 2 is a natural 

isomorphism, where cw: F(W-) 2 (FW) -, such that ~i&~(~~@l&@~- w = uoF(Aw) and 
9 

P~~~~~~~wP~w w- 5 
= uoF(pw) for each W) ; we assume, in addition, that, for each 

hvl E s as above, there are given isomorphisms gu v: FW & FV, g; v: FW’ ti FVr 
9 9 

with the property that g; voFu = Fvogu v and satisfying, besides the coherence 
9 9 

condit ions (A) - (C) of section 3, the following one: (D) For (u,v) E S as 

above, the following diagrams commute 

iz- - 
F(Vf-) ’ +z F(Wf-) 

g’w h 

F(Vw) & F(W? 

(We note that for Ew , T, etc., these conditions are trivially satisfied.) Then 
0 

we construct a (unique) homomorphism of categorical groups (G,Y,v,Tl): Ezw + v 
0 

such that (G,Y,v,n)@,id,id,id) = (F,@,p,C) and G(fu v) = gu v , 
9 9 

WA J 
9 = gL,v 

for each (u,v) E S. Indeed, G, Y, and v are defined as in the previous case 

(cf. section 3), whereas 0 is defined by ow = cw. We note that the naturality 

of q follows from the commutativity of diagrams (5). 
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Thus, we have the following result: 

PROPOSITION 2. 

and d.aX dze fu vs, fu vs, and T ~al%dy X!~C cuizehence cunc&Luti (A) - (D). 
9 > 

And @L any caXquti~& ghuup P a~ abuve, and bnumuhpmm ud categutical ghuuph 

~kte iA a unique kJmUmUhp&Am ub cc&eguhic& ghuup.4 (G,Y,v,q) : aw -+ v &LC~ 

Xti (G,Y,v,q)@,id,id,id) = (F,@,u,c) and G(fu v) = gu v, G(fLOv) = g; v 6uh 9 9 9 9 

ead2 (u,v) E S. Il 

The meaning of the above proposition is that, under the more restrictive 

coherence conditions (A) - (D), EZw is a quotient category of CZ as categorical 
0 

groups. 

Similarly to the treatment for CZw (cf. section 3), one cari also con- 
0 ---- 

sider natural transformations between homomorphisms (F9Q-M and (F,%UL) 

from CZ to 0. Only, we consider group-like natural transformations. By a ghoup- 

Zwq@.ma&Lun 

transformation, 

gram is commutative for any abject W 

we mean a monoidal natural 

such that, in addition, the following dia- 

(cf. also r_121, II, 2, diagram (D.11)) Of course, the definition is valid for ar- 

6W h 
- (FW) 

- 
l o; CW - N 

-(FW) 

bitrary categorical groups. 
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Thus, let, in addition to (F,@,p,c), a homomorphism (F,F,F,r) of cate- 

gorical groups be given, and isomorphisms Lu v and i' v, similar to the gu vs 
9 9 9 

ad g; ,+ such that conditions (A) - (D) are satisfied, and let o: (F,@,p,c) -+ 
9 

(F,&F,c) be a group-like natural transformation satisfying condition (T) of sec- 

tion 3. If (ë,F,F,ïQ is the homomorphism FZ 
wO 

-+ 0 corresponding by Proposition 

2 to (F,F,r,r), then there is a unique group-like natural transformation x 

(W,W-I) -+ (ë,F,T,6) such that TOT = o. Indeed, T is defined by rw = ow for 

any word 
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