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GENERAL SOLUTION METHODS FOR FREDHOLM 
INTEGRAL EQUATIONS WITH KERNEL K (z,zo) 

ON THE INTERVAL(0,") 
= g(zzo) 

Carolyn M. Van Vliet 

Résumé 

Les équations intégrales de Fredholm de première espèce de la forme 

4 = io 0 
K(z,z,>x~~ol dz0 3 

où K(z,zo) = g(zzo) peuvent être résolues avec une transformée de Laplace par rap- 

port à la variable z , donnant f(z) <-> F(s) , suivie par une transformée de 

Me1 lin par rapport à s de même que z. . La méthode est illustrée pour le noyau 

w,zol 
4 = (4/n)sin (zz,/2) . Les équations de Fredholm de deuxième ou de première 

espèce peuvent souvent être résolues par la substitution z. = l/u , et en employant 

des transformées de Mellin partielles; cependant cette méthode est souvent plus fas- 

tidieuse que la méthode mentionnée ci-haut. 

Abstract 

Fredholm integral equations of the first kind, of the type 

i 

00 
cp(z> = 

0 
K(G zo)x(zo) dz0 9 

where Klz,zo) = g(zzol 9 cari generally be solved by applying’ first a Laplace trans- 

form with respect to the variable z , mapping f(z) <-> F(s) , and subsequently a 

Mellin transform with respect to both s and z. . The method is illustrated for 

the kernel w  3 zo3 = (4/n)sin4(zzo/2) . Fredholm equations of the first or second 



kind cari often be solved by the substitution 2 
0 

= l/u , using further partial 

Mellin transforms; this method is usually more cumbersome than the aforementioned 

method. 

1. Introduction 

Integral equations of the Fredholm and Volterra types, cari often be solved 

using the convolution theorem of an appropriate integral transform pair. Thus, 

Fredholm equations, both of the first and second kind, with kernel v(z+zo) on the 

interval are solvable by Fourier transform of the entire equation (i .e. 

with respect to both z and z. 1, with an extension of the method on the interval 

(O,a) by the Wiener-Hopf procedure; Volterra equations with kernels V(X-x0) on 

the interval (0,x) or ov) are solvable by Laplace transform of the entire 

-1 
equation; Fredholm equations of the first or second kind with kernel v(z/zo)zo 

on the interval are solvable by Mellin transform of the entire equation. 

These methods are well documented in the literature, see e.g. Morse and Feshbach 

Cil, Green C21. 

Recently in the theory of spectral densities we came upon a Fredholm in- 

tegral equation of the first kind with kernel 4 sin (zz,/2) and we formulated its 

general solut ion C 3 3. It then appeared to us that a11 Fredholm integral equations 

of the first kind, with kernel g(zzo) are solvable by the same procedure. Now , 

of course, these equations cari formally be carried over in those with a kernel 

-1 
wuo)uo 9 by the substitution z. = l/uo ; -1 however, the function u. x(l/uo) on 

which the kernel now works often renders the method cumbersome, see section 4. For 

that reason, we also present another technique, set forth in section 2. In section 

3 we give an example. 

2. The method 

We consider the equat ion 

(2.1) 
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Let @ (s) be the Laplace transform of cp (z) , and let G(s) be the Laplace trans- 

form of g(w) ; then, 

g(zzo)ewsz dz = g(w) e 
‘(s/zolw 

dw/zo = G(s/zo)Zo' . (2.2) 

Consequently, assuming that the Laplace integral and the integral in (2.1) are inter- 

changeable, we obtain 

dz 
e(s) = G(s/zo)X(zol z” (2.31 

0 

which is exactly of the form required for the applicability of the Mellin transform. 

T~US, taking the Mellin transform of both members in (2.3)) we recall the convolu- 

tion th eorem 

where 

V(P) = ds spmlG(s) < 00 for oc < Re p c y (2.5) 

and 

x(p) = r ds spW1x(s) < 03 for Ü. < Re p < yo . 
0 

(2.61 

Let also F(p) be the Mellin transform of a(s) ’ 

00 
F(P) = ds sp-‘@ (s) < 00 for oo < Re p < T 

0 
(2.7) 

0 

then eq. (2.3) is transformed to 

F(P) = V(P)x!(P) 9 Re p f common domain of analyticity. (2.8) 

’ Usually one assumes for the existence that the Lebesgue integral 

I 
; ds I@(s) 1 ‘s’~-~ < * for a, < fi c TO ; the domain of analyticity of the 

transform is then a0 < Re p c 2. . This condition is sufficient, but not 

necessary, however, as is exemplified by M sin z = r(p)sin p~r/Z , Re p > -1 . 



In order for (2.8) to be valid there must be an overlap of the domains specified in 

(2.5), (2.6) and (2.7), see Fig. 1. The validity of (2.8) in the rest of the 

complex plane, except at poles or branch points, is obtained by analytic continua- 

tion of the functions involved. Let c3’ be a real number from the common domain 

of analyticity; the inversion of (2.8) yields 

x(z) - 1 “+@ -7 du F(p) 
27rl 

fs’ -jm zP V(p) l  

(2*9) 

This integral is usually obtained by closing the line Re p = E’ with a suitable 

contour, see Fig. 1. 

exists - 
and is analytic- 

;“’ ; 
- ip, exists 
and is analytic 

4c - Re p 
Y 

m 
- L/J 

Fig. 1 

The case oo < 7. for which the domain of analyticity of the 

full Mellin transform overlaps with the domain of V(p) . The 

shaded area gives the analyticity of the transformed equation. 

The inverse is along Re p = /Y with oo < Bt < ~~ . 
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We note that (2.9) has poles where F(p) has poles (that are not poles of V(p)) 

or where V(p) has zeros (which are not also zeros of F(p)). The zeros of V(p) 

are particularly noteworthy when they provide poles that fa11 within the common 

region of analyticity of V(p) and + (p) , for they then determine the limits Ü. 

and yo which were initially unknown, and 6’ must be chosen from 

max(oo,üo,o) < B* < min(To,$,y) . (2.10) 

There may be some ambiguity in associating the limits $ or yo with one of the 

above mentioned poles; generally, if the domain due to F and V is limited only 

on one side, say min$y) , fi’ should be taken between this bound and the first 

pole prior to this bound, which refers to Ü. . 

In many cases the full Mellin transform does not exist for any p , since 

the integral is improper at both ends. We must then split +(s) into two parts 

and likewise for ,x such that .J 

Ns) _ = @ (S)U(I-s) t @+(S)U(S-1) , (2.11) 

where U(x) = 0 for x < 1 and U(x) = 1 for x > 1 . We then introduce the 

Nellin transforms for the two parts, a procedure well described in Morse and 

Feshbach C 21: 

po 1 
F-(P) = 

10 
ds sP% (S)U(I-S) = ds sp-‘@ (s) , (2.12a) 

0 

F,(P) = ds ~~-~@$s)u(s-l) = 
P 1 

ds s~-‘@~(s) ; (2.12b) 

clearly 

.hWsl = F (P) f F+(P) l  
(2.13) 

Similarly we introduce 

JL.(P) = ,; ds sp-lx (s) (2.14a) 

Lt(P) = ds sp-lx,(s) . (2.14b) 
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Let now 

f 

1 
ds I@ (s) 1 2~2a-1 < * for o > oo , 

0 - 
(2.15a) 

and 

ds I@+(s) 1 2s2T-1 < 00 for 7: < rlo , (2.15b) 

f 

1 
ds 

0 
ljf (s) 1 2s2ü-1 < for ü>ü 

0 ’ 

ds I~,(s)/~s~‘-’ < m for Y<-? 
0 l  

(2.16a) 

(2.16b) 

Since the full Mellin transform does not exist, this implies that ~~ 2 oo , and 

T sa 
0 

o in contrast to the inequalities figuring in (2.6) and (2.7). Equation (2.8) 

is now meaningful if the lower bound a , set by the existence of V(p) , is less 

than ~~ and TO while the higher bound y , set by the existence of V(p) , is 

greater than oo , and ao . We cari then choose a CT’ and T* from the region 

common for the existence of V(p) and Q, , X or @, - , >I, , respectively, see 

Fig. 2. Thus the region of analyticity consists of two strips near a and y . 

In the rest of the plane, except at poles or branchpoints the transformed integral 

equation is validated by analytic continuation, Equation (2.8) now reads explicit- 

lY, 

F- (P) + F+(P) = V(P)CX-(p) + ,-,(p)l . (2.17) 

Using a theorem of Morse and Feshbach (op cit p. 463) one cari conclude that 

F-(P) - V(P) /z-(P) = -F+(P) + V(P)%+(P) = S(P) 3 (2.18) 

S(P) is analytic in the entire region a < Re p < f3 . The function 

is the Mellin transform of the solution of the homogeneous equation, 

g(=,) C (zo) dz0 = 0 . 

s (P) 

(2.19) 
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@+ exists - 

ond is analyt ic 

Fig. 2 

Shaded areas are domains of analyticity for the transformed 

equation. We pictured the case oo > ~~ ; outside the shaded 

areas the equation cari be validated by analytical continua- 

tion except at poles and branch points. For oo = ~~ the 

same situation prevails since T’ < T =Cl <p 
0 0 

gives still 

different contours for the inverse. 

Generally, the kernel Will not have an eigenvalue zero, in which case C E 0 , 

S 50. Thus from (2.18)) 

x(z) = & I 
O*+is dJ F-(P) 
of-j()O ,P v(p> + I 

‘I’++ * F+(P) 
~?-j~ ,P w  ’ 

0 

(2.20) 

where of and T* are respectively, from the strips 
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max(Zo,oo) < of < y and min a < T’ < min(yo,To) . (2.21) 

Since )& (P) and F+(p) are analytic outside the interval (a,@) there must be 

no poles in these regions caused by zeros of V(p) . Under this conditions, 

(2.20) provides the complete solution. An example is given in the next section. 

3. The kernel g(zzo) = 4 (4/T)sin (zzo/2) 

In Ref. 3 we considered the solutions of 

4 
dz) = yf- 

4 
sin (zz,/2)x(z,> dz0 s (34 

for various functions x(z) . The Laplace transformed kernel (with respect to z) is 

00 

sin4(zzo/2) $ 
Z4 

dz ewSZ O = 0 (s 2 t4zo) 2 (s 2 tzo)s 2 

SO that (3.1) is carried over into 

1 
2 2 

-++4)(~+1) 
Z 0 z Z2 

0 0 

which is of the form requircd for the Mellin convolution theorem 

transform of the new kernel we have 

(3.2) 

(3.3 

For the Mellin 

1,2p-3 
= -  cos pn’/3 ,  

l<Rep<S. L (34 

T~US, in Fig. 1, now a = 1 , y = 5 . Equation (3.4) is to be substituted into 

(2.9) or (2.20). 

We consider first the case that 

dz) = n -2 (4ewnz-e -2qz t2qz-33) 3 r1’0. 

a(s) = 4c 
2q-s 

s2(s2-4n2) 
y--r ; s-v -J 

s (s -rl > 

(3.5) 

(3.6) 
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the full Mellin transform of + (s) exists C43 : 

F(P) = 
m$-3(l-p-3) 

sin p!j- COS pn2 
9 2 < Re p =C 4 . (3.7) 

(T~US, for this case 2 = CT < 9. 
0 

= 4 .) There is an overlap of the domains indi- 

cated in (3.7) and (3.4) ; V(p) has no zeros, SO we take f3 1 such that 2 < B f < 4. 

The poles of F(p)/V(p) occur at the zeros of sin(prr/2) , i .e. at p = 2m , 

m= 0,+1,+2,. . . Explicitly, from (3.4), (3.7) and (2.9) we have 

dp (t)p-2 +- . 
sin -2p7T 

(3.8) 

z<rl we close the contour with a semicircle in the left half plane, and for 

with a semicircle in the right half plane; the poles to be included are 

m = O,l,-l,-2 ,... or m= 2,3, etc. respectively. 

is summable, and we obtain a Lorentzian: 

z2x(z) = 24”2 . 
rl i-z 

Secondly, let 

In both cases the residue series 

cp 0) = KzP , oqH4. 

@(s) = KrQtl)s -1-1-l , Res>O. 

(3.9) 

(3.10) 

(3.11) 

The partial Mellin transforms are 

F-(p) = p _ ; _ 1 r(W) 9 Re p > oO = 1 + 1-1 , (3.12) 

F+(p) = - p _ ; _ 1 r(p+l) 9 Re P < r. = 1 f p l  
(3.13) 

With 0 < p < 4 , the oo and TC~ are located as in Fig. 2. For (2.19) we now 

obtain 

1 
x(z) = - m I 

“+ioo c& Kr (ytl) cos(p7T/2) 

or-i? 2 p (p-p-l) (l-zp-3) 

t I r’sim 0~ u(pti) COS(PTT/~) 

r’ -im z p (p-p-l) (l-zp-3) ’ 
(3.14) 



where o’ issuchthat ltu<o’< 5 and V issuchthat l<V< l+u; the 

situation is as sketched in Fig. 2. Note that p = 3 does not provide a pole since 

the numerator is also zero, and the ratio is finite. Thus there is only one pole 

at P =vtl, occurring as expected outside the domains of analyticity. 

plane. 

z< 1, the contours are closed with a semicircle in the left half 

The integral over F, (P) D(P) 

From the other integral one obtains 

Hence for p 4 2 : 

now vanishes since the integrand is analytic. 

1 

x(z) = - J- lim 
COS p 

,w 

UW) l  

pfltp 1 - 2 P-3 

1 

x(z) = -AL 
sin ~7r 

zp+l 1 - p2 
W+l) 9 1-I f 2 l  

(3.15) 

(3.16) 

For p = 2 one finds from de 1*H8pitalfs rule 

x(z) = Tr/z 3 log 2 . (3.17) 

For z > 1 , the same result is obtained by closing the contours with a semicircle 

in the right half plane. We note that the functions x(z) obtained are highly 

singular at the origin, yet the transform method works quite well. 

4. Remarks on Fredholm equations of the second kind 

The equat ion 

x(z) = q(z) t x r 0 
g(zz,)x(z,) dz0 (44 

cannot be solved by the techniques of section 2. The only method here is substitu- 

tion of u = l/zo . Then (4.1) becomes 
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With xWu)u-I z t)(u) this equation is now in a form that the convolution theorem 

of the Mellin transform cari be employed. 

First we consider again the case that the full Mellin transform of (p(z) 

exists. T~US let 

@ (P) = 
r 

dz zpœl+) E M~(Z) < ~0 for CT~ < Re p < ~~ . Vg3) 
0 

Let further the Mellin transform for x(z) be defined by 

X(P) = M~(Z) < 03 for ao < Re p < 7 . 
0 (4 l 4) 

From this we also find 

X(1-p) = 
r 

dz z-~x(z) = du u~-~x(~/u)u 
-1 

= Mx(l/z)z 
-1 . (4 3 

0 

Further for the kernel 

W(P) = Mg(z) < 00 , a < Re p < y . (4 86) 

We require that there is a domain of overlap for analyticity of (4.3)) (4.4) and 

(4.6). The analyticity of x(1-p) for the Mellin transform (4.5) is then establish- 

ed by the transformed equation. Thus, we consider the domain of analyticity 

max($,oo,a) < Re p < min(To,To,y) l  (4.7) 

It is noted that the bounds Ü. and yo are not known. We may therefore 

want to initially ignore the CO , TO requirement in fixing a tentative domain, 

which then later on may have to be reduced at one or both sides. If üo,ao > a 

and yo,~o < y , we have the situation as pictured in Fig. 1. Applying now the 

Mellin transform to both sides of (4.2)) we find with the convolution theorem (2.4) : 

Y. (P) = G)(p) -t XW(p),Y(l-p) ; (4.8) 

the domain of initial validity of this equation is as in (4.7), see the shaded area 

in Fig. 1; outside of this area the result (4.8) is validated by analytical conti- 

nuation except at poles or branch points. 



In order to solve (4.8) we also Write down the result for l-p: 

X(1-p) = @ (1-P) + XW(l-p)l(p) ; (4.9) 

the analyticity of the functions in this equation must caver the same domain, i.e. 

W(l-p) and $J (l-p) must be analytic in the domain where both W(p) and a(p) are 

analytic (if this is not the case, the method fails). Solving now from (4.8) and 

(4.9) for À’(p) we obtain 

% (p) = 3) (P) + A@(l-P)W(P) . 
1 - X2W(P)W(l-P) 

(4.10) 

Then by inversion, if B’ is a value of Re P in the interval (4.7) 

x(z) = & I 
B’+ioo dJ$(p) t A!$(l-p)W(p) . 

f3’ p1 -ia 2 - X2W(P)W(l-P) 
(4.11) 

We note that if the condition for (4.9) is satisfied, the two terms in the numera- 

tor of the r.h.s. are both regular in the tentative domain of analyticity. 

consider the poles of the r.h .s., given by 

1 - X2W(pr)W(1-p,) = 0 . 

We now 

(4.12) 

If there are no poles in the tentative domain, then x(z) is regular and the 

tentative domain is the definite domain satisfyi.ng (4.7) . This means that $ is 

lying to the left or coincides with max(a,,cl) and TO is lying to the right or 

coincides with min(T,,y) . If there are poles within the tentative domain, then 

the definite domain is construed by one of the bands between adjacent poles which 

fa11 entirely within the tentative domain (again there is somc ambiguity in the 

choice, as for the case of Eq. (2.9))) or by a partial band composed of max(ao,a) 

and the first pole to the right or composed of min(-ro,y) and the first pole to the 

left. The line Re p = f3’ must be within this band cr partial band. We thus note 

that, since the poles are a function of X , it is the choice of X which determines 

a pa&OY~Loti the bounds Ü. and T 0 ’ TO the solution (4.11) we must add the so- 

lutions of the homogeneous equation, see below. If the number of poles is infinite 

there are an infinite number of solutions of the homogeneous equation. 
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We illustrate the result for the kernel g(zzo) = 
4 (4/Qsin (zzo/2) of 

section 3. Its Mellin transform exists; in fact, from the second example in section 

3 one easily obtains, 

W(p) = : dz zpœl sin4(z/2) = - ’ - ’ 
-p-2 

sin p$ l-p) 

_ 1 _ 2-P-2 
0 - 

w2 COS P$r(P) Y -4 < Re p < 0 , 

Where we used the reflection property 

UPV(l-P) = @in pu . 

(4.13) 

(4.14) 

Taking C~(Z) as in (3.5) we find a Mellin transform’ 

wo = 4r(p)CP-2(i-2-P-2) , G = -3 , T = -1 . 
0 0 

(4.15) 

Using (4.13) and (4.14) we find for the poles 

2 
1 - h2W(p)W(l-p) = 1 - z& (1-2-P-2) (1-2P.3) = A(P-Pl) (P-P,) = 0 l  

(4.16) 

Let Zp = x and let 2X2/~ = a . Then xr is a solution of 

4ax 2 t (32-33a)x t 8a = 0 . Suppose 0,722 < a < 1,476 . Then xr is complex 

with modulus 1x1 =dx,x,=d2. Hence for both roots, Re p, = log 1 XI /log 2 = 1 . 

This is well outside the limits set by (4,15), which comprise therefore the definite 

domain. For the second term in the numerator of (4.11) we have 

AZ) (1-P)W(P) = 
4x~p-~(l-2p-~) (l-~-p-~) 

sin pT/2 ; (4.17) 

It is easily seen that the first three terms of a Taylor series for q(z) vanish, 

SO cpo = O(z3) for z+o, For the individual terms of q(z) the Mellin 

transforms @- and at are found for stricter conditions, viz. Re p > 0 and 

Re p c -1 , respectively . For the total expression Qj cari now be analytically 

contin.ued to Re p > -3 , after which it overlaps with ++ ; we cari then find @ 

by adding +t and @- . 
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this is indeed analytic on -3 < Re p < -1 , as it should. Hence (4.11) is a valid 

solution, B ) being anywhere in -3 < 6’ < -1 . The total collection of poles of 

the integrand in (4.11) is . . . . 6,4,2,@bi,O,-1,.3,.4 ,... The line Re p = f3l in 

(4.11) is closed with a suitable contour as in Fig. 1. 

Next, we consider the case that cp (z) has only partial Mellin transforms. 

Thus, let analogous to (2.11) 

where we noted 

U(l-l/z) = U(z-1) , 

The relevant Mellin transforms are 

‘p-(P) = 
Im’ 

dz zp-l<p-(z)U(l-z) =‘ 
0 f 

1 

0 
dz zp-$ (z) , Re p > oo , 

a+(P) = 
r 0 

dz zp-$p+(z)u(z-1) = 
r 1 

dz zp-‘q+(z) , Re p < ~~ , 

In addition we have, 

L(p) - - = M x (z) , Re p > $ , 

x,(P) = M+x,( z) , Re p < TO . 

x-(1-p) = i’ dz zœpx (z) = - 
0 r 

1 du u~-~x-(~/u)u-’ = M+x-(l/z)z-' , 

r f 

1 
X+(1-P) = 

1 
dz z-px+(z) = 

0 
du u~-~x+(~/u)u-~ = M-x+(l/z)z -1 . 

The transformed equation now reads 

y (P) + U+(P) - - , ;. = g-(P) + a+(p) + WP) [x+(1-P) + R-(1-P) 1 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 
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or 

U-(P) - k(P) - XW(P)J+ (1-P) 1 = Lr+CP) t et (PI t XW(P)X- (1-P)) l  
(4.29) 

The first { ) are a11 M transforms of the relevant functions and the second 

{ ) are M, transforns of the relevant functions. We assume that there are strips 

of analyticity for the terms within the first accolades 

max(oo,~o) < Re p < y (4.30a) 

and for the terms within the second accolades, 

oc < Re p < min(To,To) . (4.30b) 

The situation is as in Fig. 2. 

For the inverse transforms we must choose lines Re p = of and Re p = T* , 

with CI’ and T’ within the strips of Eqs. (4.30a) and (4.30b), respectively . 

Equation (4.29) now leads to (see Cl], lot. cit.) 

x_(P) - MPI/z+U-PI = @-(PI t S(p) ) (4.31) 

x, (50 - XW(p)x]- (l-p) = @t(P) - S(P) > (4.32) 

where S(p) is an analytic function in the entire domain a<Rep<f3. In Eq. 

(4.32) we change p into (l-p) . Again, this is only useful if the new functions 

are analytic in the strips, i . e. 9,(1-p) and W(l-p) must be analytic in the 

strip (4.30a), where @ (p) and W(p) are analytic. We cari then solve from (4.31) 

and the switched result (4.32) for J (p) and X,(1-P) ; the latter also yields 

X,(P) ’ SO we finally arrive at 

X-(P) = 
@AP) t &Cl-P)W(P) 

1 - X2W(p)W(1-p) ’ 

.y (p) _ @t(P) t ~~-U-PW(P) 
.,.t - 1 - X2W(p)W(1-p) l  

(4.33) 

(4 ** 34) 

This yields for x(z) 



1 
x(z) = x 

I 
o’+ioo dE @ - (P) + =t Wp)W(p) 

@-im 2 p 1 - ~2WP)w(l-P) 

1 
fzs I 

T’tioo d@+(P) -t A@-Cl-pW(p) t x 

TUF z p 1 - ~2WP)Wl-P) 
0 

(z) 
9 

where x0 Cz) is the solution of the homogeneous equation, 

1 
x,(z) = m 

f 
* S(P) - Wl-P)W(P) 

czp 1 - h2WP)Wl-P) 

(4.35) 

(4.36) 

where C is a counterclockwise closed contour consisting of the lines Re p = T’ 

and Rep=o’ . The solution is quite similar to that for kernels of the type 

v(ztzo) , see Cl, p. 9701 . 

As to the homogeneous solution, let the poles within the area of the 

contour be p, (see below) , and let 

1 _ bs b s-l 

- h2W(p)W(1-p) - 
- f 

(p-p,) s-1 
t 

l  l  l  1 (P-Pr) ’ 

The solutions are then of the form 

x,(z) = s-l Opr c Ar,mg zl z 9 
r,s 

(4.37) 

(4.38) 

where A are constants to be determined. rs 

Returning to (4.33) and (4.34) the r .h.s. has the same domain of analytici- 

ty as the 1.h.s.; in particular, the numerators are analytic to the right of the 

bounds max(Üo,oo) and min(Fo,To) , respectively. Hence the poles given by (4.12) 

cannot occur in these regions, SO we find 

min(yo,To) < Re p, < max(Üo,oo) l  (4.39) 

It is thus again Or. p~&&M.~ti possible to fix Ü. and yo . Also, (4.39) puts a 

restriction on the possible values of X ; the largest leeway on X occurs when 

a 
is pushed to the bound a and Ü. is pushed to the bound y . Thus the roots 

must satisfy 
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a t E < Re p,(A) 5 Y - E 

for E 

lines 

arb itrari ly small . The shaded areas of Fig. 2 thus become very thin. 

and Will likewise be pushed very close to a and Y ; this fixes 

of the first kind. For the Eu11 Mellin transform case one finds, 

@Cl- 1 
-5 W(l-p ’ (4.41) 

while for the partial Mellin transform one has 

1 
I 

ct+= *@+(1-p) 1 T’tio6 
x(z) = m ,P Wot 2.iri 

*a- (l-p) 

,p w(1-p) l  

(4.42) 
at-icx, Tt-im 

We now need the domains where @(l-p) , 9,(1-p) , and W(l-p) are analytic. With 

the bounds on a(p) , @+ (p) and W(p) as before, one finds for W( l-p) : 

a < Re(l-p) < y , or 

1 - y < Re p < 1 - a . (4.43) 

In the case of existence of a full Mellin transform, the domain of analyticity for 

eq. (4.41) is 

l- min(To, To,y) < Re p < 1 - max@ 
o>ao’a l  l  

(4.44) 

The line Re p = f3’ must be in this domain. For the case of (3.5), (4.13) and 

for @+ are: 

@- (1-P) : Re p < 1 - oo , (4.45a) 



@+(1-P) :Rep>l-ro. (4.45b) 

The strips of analyticity for eq. (4.42) become as in Fig. 2, but with 

left and @+ at the right; must be within these strips. 

@- at the 

Because of 

the change in bounds and different transformed kernels, this method is usually less 

straightforward than that of section 2, though it gives identical results. 
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